• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

UNIST unveils the genomic mechanism of African clawed frogs

Bioengineer.org by Bioengineer.org
January 29, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UNIST

Scientists from around the world, including South Korea, Japan, and United States have, for the first time, decoded the complex genetic makeup of the well-known laboratory animal Xenopus laevis, also known as the African clawed frog. The discovery is an important one, as these amphibians are often used to study the genetic basis of many human diseases, including cancer and congenital abnormalities.

The lead author of the study, Prof. Taejoon Kwon (School of Life Sciences, UNIST) and 74 other researchers representing 46 institutions, published their findings about the genome evolution of the African clawed frog in the prestigious journal Nature. The study has been also featured on the inside front cover of the journal on October 20, 2016.

The African clawed frog is a tetraploid species that has four sets of chromosomes, while many organisms, including humans, are diploid and have two sets of chromosomes. One hypothesis is that the genome of two diploid ancestral frogs are somehow merged, giving rise to a tetraploid organism with twice the number of chromosomes as its ancestors.

For a century, African clawed frogs have served as a valuable and versatile laboratory model for a variety of basic biology studies. These frogs are easy to study, as their development from fertilized frog eggs to swimming tadpole takes place in the water. Moreover, its ability to lay hundreds of eggs at any time of year, as well as large, robust eggs that can be induced by hormone injection are some of the characteristics that make it an ideal laboratory model.

This has not only shed light on both fundamental mechanisms of vertebrate embryonic development and mechanisms underlying human diseases, but also led to major advances in understanding cell and developmental biology, including somatic cell nuclear transfer which granted Sir John Gurdon the Nobel prize.

The research team made use of these frogs' unique composition to sequence its entire genome for the first time, a process that took them seven years. To achieve this feat, they took advantage of new chromatin-related sequencing technologies as well as detailed microscopic examination of chromosomes with fluorescent markers.

Although Xenopus laevis is an essential organism for biological and biomedical research, due to the sheer size and complexity of its genome, sequencing the entire genome of Xenopus laevis has been difficult for scientists. The research team notes that the new findings will help our understanding of vertebrate evolution, as the vertebrate genome doubled twice 500 million years ago.

By analyzing and sequencing the African clawed frog genome, the research team discovered a striking pattern of genome duplication in these frogs. They found that the frog's genome arose through interspecific hybridizations of two now-extinct species between 15 and 20 million years ago.

Prof. Kwon states, "The ancient vertebrate duplications are far older, and obscured by chromosomal rearrangement and gene loss." He adds, "However, findings from Xenopus provide insights into many human conditions and diseases in that we can inject human disease genes into the eggs and study the ongoing process of loss."

Researchers expect that the discoveries will not only help us understand the evolutionary aspect of vertebrates, but through frog research, also lead to applications in regenerative therapy.

This study has been supported by by the U.S. National Institutes of Health and the Japanese and Dutch governments, as well as the UNIST Research Grant for New Faculty. UNIST is the only institute in South Korea, studying both the African and Western clawed frogs. Prof. Kwon uses these models to study a variety of human diseases, while Prof. Park studies the role genes play in the formation of the face.

###

Journal Reference

Adam M. Session, Yoshinobu Uno, Taejoon Kwon, et al., "Genome evolution in the allotetraploid frog Xenopus laevis", Nature, October 19, 2016.

Media Contact

JooHyeon Heo
[email protected]
82-522-171-223

home

Share12Tweet7Share2ShareShareShare1

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.