• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Scientists ID human protein essential for human cytomegalovirus…

Bioengineer.org by Bioengineer.org
January 28, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Lin Y-T, et al. (2017)

Scientists have demonstrated that a human protein known as valosin containing protein (VCP) is essential for replication of human cytomegalovirus (HCMV). The findings, published in PLOS Pathogens, identify VCP as a potential new treatment target.

HCMV infects 30 to 100 percent of people worldwide, depending on socioeconomic status. While most remain symptom-free, HCMV can be dangerous or deadly for people with weakened immune systems or for babies infected before birth. Some HCMV treatments exist, but their benefits are limited, and scientists are investigating new ways to treat and prevent infection.

To better understand how HCMV replicates during active infection, Yao-Tang Lin and colleagues at the University of Edinburgh, U.K., performed a search for human genes needed by the virus for replication. They found that reducing the expression of the VCP gene in HCMV-infected human cells significantly reduced viral replication in the cells.

Additional experiments showed that, without VCP, HCMV is unable to express a critical gene known as IE2. This viral gene is known to be essential for replication and is thought to play a major role when the virus switches from symptom-free, dormant infection to active infection.

Given the critical importance of VCP for HCMV replication, the scientists tested the effects of a chemical known to inhibit the activity of VCP. They found that the inhibitor, known as NMS-873, reduced HCMV replication and IE2 expression in infected cells. NMS-873 appeared to be ten times more potent than Ganciclovir, the most commonly used antiviral treatment for HCMV.

Further research is needed to determine whether NMS-873 — originally developed as a potential anti-cancer drug — is safe and effective in humans. Nonetheless, these findings suggest that NMS-873 and other molecules designed to inhibit VCP could potentially serve as HCMV treatments, particularly in patients infected with HCMV strains that are resistant to existing drugs.

"Human Cytomegalovirus infection is an important human disease," the authors further explain. "By gaining a better understanding of how the virus works, we can develop improved antiviral drugs. While more work is required, this study shows the potential of such approaches."

###

In your coverage please use this URL to provide access to the freely available article in PLOS Pathogens: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006329

Citation: Lin Y-T, Prendergast J, Grey F (2017) The host ubiquitin-dependent segregase VCP/p97 is required for the onset of human cytomegalovirus replication. PLoS Pathog 13(5): e1006329. https://doi.org/10.1371/journal.ppat.1006329

Funding: This work was supported by funding from The Wellcome Trust (088308/z/09/z), the Institute Strategic Programme Grant Funding from the U.K. Biotechnology and Biological Sciences Research Council [grant number BBS/E/D20241864] and the Medical Research Council, MR/N001796/1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact

Finn Grey
[email protected]
44-013-165-19241

Home

Original Source

http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006329 http://dx.doi.org/10.1371/journal.ppat.1006329

Share12Tweet7Share2ShareShareShare1

Related Posts

Glycerol-3-Phosphate Drives Lipogenesis in Citrin Deficiency

November 14, 2025

Tetrafunctional Cyclobutanes Enhance Toughness Through Network Continuity

November 14, 2025

Reevaluating Uterine Closure Techniques in Cesarean Deliveries: A Call for Change

November 14, 2025

Revolutionary Leap: AI Progresses at the Speed of Light

November 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Glycerol-3-Phosphate Drives Lipogenesis in Citrin Deficiency

Tetrafunctional Cyclobutanes Enhance Toughness Through Network Continuity

Reevaluating Uterine Closure Techniques in Cesarean Deliveries: A Call for Change

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.