• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Saved by the sun

Bioengineer.org by Bioengineer.org
January 28, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Michael Hawkes

A new twist on the use of renewable energy is saving children's lives in Africa. The innovation–a solar powered oxygen delivery system–is providing concentrated oxygen in hospital for children suffering from severe pneumonia.

The device created by Dr. Michael Hawkes, an assistant professor in the University of Alberta's Division of Pediatric Infectious Diseases, is the focus of a recently published study in The International Journal of Tuberculosis and Lung Disease and is already in use in two hospitals in Uganda.

"Solar-powered oxygen is using freely available resources–the sun and air–to treat children with pneumonia in the most remote settings," says Hawkes. "It's very gratifying for a pediatrician doing research in a lower-resource setting to fill a clinical gap and save lives. It's what our work is all about."

Each year, 900,000 children die of pneumonia worldwide with most deaths taking place in Africa and Asia. Vaccinations and medications exist, but are being rolled out slowly in Africa where diagnostics are poor and chest x-rays are not readily available.

Children with severe pneumonia have infected lungs that need concentrated oxygen until antibiotics begin to work. The concentrated oxygen helps overcome a problem with oxygen exchange caused by the lung infection. In Canada, it is available at the bedside in every hospital room. In developing countries like Uganda, it's harder to come by reliably.

Hawkes worked in Ugandan hospitals in the communities of Kambuga and Jinja for over two years where he quickly recognized a need for a more reliable oxygen source. In low-resource settings, oxygen can be delivered using cylinders, which are often in short supply, or concentrators, which depend on electricity. In Kambuga there were multiple power outages each day, some lasting for up to 48 hours.

"In the hospital you often didn't have access to oxygen cylinders. So the power goes out and you're out of luck. We had children that died in front of our eyes," says Hawkes.

To establish a reliable oxygen source, he and his colleagues came up with the idea of using solar energy. During the day, solar panels supply power to an oxygen concentrator that strips oxygen out of the air. At night, charged batteries from the panels supply the power to the concentrator.

To fund the idea, they received a Grand Challenges Canada grant, a Government of Canada initiative that supports global health research. The funds were used to set up the systems at the Kambuga and Jinja hospitals. "We piloted it on a group of 28 children and it showed that you could use the solar panels and batteries to run the concentrator 24/7. We treated children with pneumonia and the system worked," he says.

Next they conducted a larger randomized controlled trial and showed that solar powered oxygen delivery works just as well as the conventional method of oxygen delivery using cylinders. The trial officially ended in 2015, but after seeing such strong results, the hospitals continue to use the solar powered systems.

Hawkes and his team are now working with the Clinton Health Access Initiative (CHAI) in hopes of soon expanding the system's use to 80 hospitals across Uganda.

"If we could expand it, could you imagine how many children would have access to lifesaving oxygen therapy?" Hawkes wonders. "The challenges are different in these areas of the world, and the innovations need to be different as well."

###

Media Contact

Ross Neitz
[email protected]
780-492-5986
@ualberta_fomd

http://www.med.ualberta.ca

Share12Tweet8Share2ShareShareShare2

Related Posts

Body Image and Internalization: A Tripartite Model Insight

November 14, 2025
Genotype-Specific Immune Responses in Newcastle Virus-Infected Chickens

Genotype-Specific Immune Responses in Newcastle Virus-Infected Chickens

November 14, 2025

Unifying Understanding of Endoplasmic Reticulum Exit Sites

November 14, 2025

Novel Fluorogenic Sensor Detects Hydrogen Peroxide Colorfully

November 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Body Image and Internalization: A Tripartite Model Insight

Genotype-Specific Immune Responses in Newcastle Virus-Infected Chickens

Unifying Understanding of Endoplasmic Reticulum Exit Sites

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.