• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

New treatment approach for autoimmune disorder

Bioengineer.org by Bioengineer.org
January 26, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: A. Schreiber

ANCA-associated vasculitis is a systemic disease, which is characterized by the body's immune system attacking structures present inside white blood cells, thereby causing inflammation within small blood vessels. While kidney involvement is common in vasculitis, and may lead to acute renal failure, the condition can also affect the lungs and other organs. Conventional treatment is based on suppressing the immune system. This treatment method stops disease progression, but is associated with severe side effects.

So, what exactly happens within the human body – what is the chain of events responsible for producing this disease? A team of researchers, led by PD Dr. Adrian Schreiber (Vasculitis Experimental Animal-Based Research Working Group at the Experimental and Clinical Research Center, ECRC) and Prof. Dr. Ralph Kettritz (Charité and ECRC), were able to show that the process is triggered by the activation of a programmed form of cell death (necroptosis) within the body's white blood cells. Antibodies which target the body's own proteins (auto-antibodies) attach themselves to certain components of white blood cells. This activates necroptosis, which results in the formation of neutrophil extracellular traps (NETs) – complex networks of extracellular fibers composed of DNA. The team of researchers discovered that these NET structures play a role in the activation of the complement system (which forms part of the immune system), thereby contributing to the development of the disease. Using a variety of genetically-modified animal models and a pharmacological model, the researchers were able to show that necroptosis is one of the key mechanisms of pathogenesis in the development of severe vasculitis which is also associated with severe renal involvement.

"The specific pharmacological inhibition of programmed cell death may one day constitute a new approach to the treatment of ANCA vasculitis," explains PD Dr. Schreiber. He adds: "The first clinical studies are underway, testing whether the inhibition of necroptosis may be suitable for general application. Looking ahead, we hope that, based on our data, it will be possible to develop a new treatment for ANCA vasculitis."

###

*Adrian Schreiber, Anthony Rousselle, Jan Ulrich Becker, Anne von Mässenhausen, Andreas Linkermann, and Ralph Kettritz. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proceedings of the National Academy of Sciences USA. 2017. Epub ahead of print. Oct. 24th. doi: 10.1073/pnas.1708247114.

Media Contact

PD Dr. Adrian Schreiber
[email protected]
49-304-506-65277

http://www.charite.de

Original Source

https://www.charite.de/en/service/press_reports/artikel/detail/neuer_therapieansatz_fuer_autoimmunerkrankung/ http://dx.doi.org/10.1073/pnas.1708247114

Share12Tweet7Share2ShareShareShare1

Related Posts

Decoding the Molecular Blueprint of Targeted Radionuclide Therapy

September 9, 2025

Targeting NAD+ in Clinics: New Strategies and Challenges

September 9, 2025

Bee-Sting Inspired Microneedles from Chung-Ang University Poised to Transform Drug Delivery

September 9, 2025

Antibody–Bottlebrush Prodrugs Revolutionize Targeted Cancer Therapy

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding the Molecular Blueprint of Targeted Radionuclide Therapy

Targeting NAD+ in Clinics: New Strategies and Challenges

Bee-Sting Inspired Microneedles from Chung-Ang University Poised to Transform Drug Delivery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.