• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Healthy’ fat tissue could be key to reversing type 2 diabetes

Bioengineer by Bioengineer
January 29, 2015
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Preventing inflammation in obese fat tissue may hold the key to preventing or even reversing type 2 diabetes, new research has found.

diabet 2

Dr. Axel Kallies (L), Dr. Ajith Vasanthakumar and colleagues have found a signalling molecule could prevent inflammation in fat tissue, reversing symptoms of type 2 diabetes. Photo Credit: Walter and Eliza Hall Institute

Researchers from Melbourne’s Walter and Eliza Hall Institute, with colleagues from the RIKEN Institute, Japan, found they could ‘reverse’ type 2 diabetes in laboratory models by dampening the inflammatory response in fat tissue.

Dr Ajith Vasanthakumar, Dr Axel Kallies and colleagues from the institute discovered that specialised immune cells, called regulatory T cells (Tregs), played a key role in controlling inflammation in fat tissue and maintaining insulin sensitivity. The findings were published in the journal Nature Immunology.

More than 850,000 Australians are estimated to have type 2 diabetes, which is the most common type of diabetes, and its prevalence is rising. The disease is strongly linked with ‘lifestyle’ factors, such as being overweight or having high blood pressure. Long-term complications of type 2 diabetes include kidney, eye and heart disease, and there is no cure.

People with type 2 diabetes have reduced sensitivity to insulin, a hormone that normally triggers uptake of glucose by cells, and their cells no longer respond to insulin appropriately. This decrease in insulin sensitivity is thought to be a result of long-term, low-level inflammation of fat tissue in people who are obese.

Dr Vasanthakumar said Tregs acted as the guardians of the immune system, preventing the immune response from getting out-of-hand and attacking the body’s own tissues. “When Treg numbers are reduced, inflammatory diseases such as diabetes and rheumatoid arthritis can occur,” he said.

Recent studies have shown that fat tissue has its own unique type of Tregs, which disappear from fat tissue during obesity. “The fat tissue of obese people has lower numbers of Tregs than the fat tissue of people in a healthy weight range,” Dr Vasanthakumar said. “Without Tregs, inflammation-causing cell levels increase, and this rise in inflammation can lead to insulin resistance and high blood glucose levels, a classic hallmark of type 2 diabetes.”

The research team discovered a key hormone called IL-33 (interleukin-33) was able to selectively boost Treg populations in fat tissue, effectively halting the development of type 2 diabetes, or even reversing the disease in preclinical models.

“Treating fat tissues with IL-33 restored normal Treg cell levels, which reduced inflammation and decreased blood glucose levels,” Dr Vasanthakumar said. “Treatments that mimic IL-33 could have the potential to reduce obesity-related inflammation and type 2 diabetes.”

Dr Kallies said the research underscored the importance of ‘healthy’ fat tissue in maintaining a healthy body. “We can no longer think of fat tissue simply as energy storage,” Dr Kallies said.

“Fat tissue is increasingly being recognised as a crucial organ that releases hormones and regulates development. Keeping our fat tissue healthy is important for our general wellbeing, and our research highlights the important role it plays in preventing disease.”

The study was funded by the National Health and Medical Research Council, the Australian Research Council, the Sylvia and Charles Viertel Foundation and the Victorian Government.

Story Source:

The above story is based on materials provided by Walter and Eliza Hall Institute.

Share13Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.