• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Enormous promise for new parasitic infection treatment

Bioengineer.org by Bioengineer.org
January 25, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: The University of Manchester

The human whipworm, which infects 500 million people and can damage physical and mental growth, is killed at egg and adult stage by a new drug class developed at the Universities of Manchester and Oxford and University College London.

Current treatments for human whipworm are based on 1960s drugs initially developed for livestock and have a low success rate in people. There are also no vaccines available.

As a result there's a desperate need for new treatments. The team from the three UK universities, whose results have been published in the journal PLOS Neglected Tropical Diseases, studied a class of dihydrobenzoxazepinones, not previously associated with controlling whipworms.

The researchers found that the compounds kill the adult stages of the whipworm much more effectively than existing drugs.

Parasite immunologist, Professor Kathryn Else from The University of Manchester said: "Eradicating the whipworm requires more effective drugs, improving hygiene and vaccine development. The compounds we have discovered could address the first two of these."

Whipworm eggs are also affected by the compounds. Whipworm eggs are passed from infected faeces into people by hand to mouth contact. This often happens in unsanitary toilets or areas where people live close together. The eggs are highly resistant to extreme temperature changes and ultraviolet radiation and can remain viable in the environment for many years.

However the new compounds are effective against the eggs and could be developed into a spray which can stop infection at source.

The researchers are now modifying their compounds to make them effective enough for a treatment in humans, and one that can be turned into a product used in the developing countries most affected.

Professor Else said: "This team brought expertise from immunology, medicinal chemistry and neurobiology and really shows how combining across disciplines and institutions can lead to important new discoveries.

"Although we rarely see whipworm infection in the UK, it is a serious and damaging problem in many parts of the world and if we can develop this treatment, the lives of many people could be improved."

###

The paper, Dihydrobenz[e][1,4]oxazepin-2(3H)-ones, a new anthelmintic chemotype immobilising whipworm and reducing infectivity in vivo', was published in PLOS Neglected Tropical Diseases. http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0005359

Funding was provided by the BBSRC.

Media Contact

Jamie Brown
[email protected]
44-161-275-8383
@UoMNews

http://www.manchester.ac.uk

Share12Tweet7Share2ShareShareShare1

Related Posts

Emotional Regulation Training: Benefits for Nursing Students

November 10, 2025
AI-Powered Digital Detection of Alzheimer’s and Related Dementias: A Zero-Cost Solution Requiring No Extra Time from Clinicians

AI-Powered Digital Detection of Alzheimer’s and Related Dementias: A Zero-Cost Solution Requiring No Extra Time from Clinicians

November 10, 2025

Stepping Strong: Integrating Podiatry into Chemotherapy Care Enhances Patient Outcomes

November 10, 2025

Tiny Fish-Inspired Robots Collaborate to Target Multi-Point 3D Lesions for Precise Drug Delivery

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Emotional Regulation Training: Benefits for Nursing Students

AI-Powered Digital Detection of Alzheimer’s and Related Dementias: A Zero-Cost Solution Requiring No Extra Time from Clinicians

Stepping Strong: Integrating Podiatry into Chemotherapy Care Enhances Patient Outcomes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.