• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Atomic-scale MRI holds promise for new drug discovery

Bioengineer by Bioengineer
January 25, 2018
in Biology, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Viktor Perunicic, University of Melbourne

Researchers at the University of Melbourne have developed a way to radically miniaturise a Magnetic Resonance Imaging (MRI) machine using atomic-scale quantum computer technology.

Capable of imaging the structure of a single bio-molecule, the new system would overcome significant technological challenges and provide an important new tool for biotechnology and drug discovery.

The work was published today in Nature Communications, and was led by Prof Lloyd Hollenberg at the University of Melbourne, working closely with researchers at the ARC Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) to design the quantum molecular microscope.

The team propose the use of atomic-sized quantum bits (qubits) normally associated with the development of quantum computers, but here would be employed as highly sensitive quantum sensors to image the individual atoms in a bio-molecule.

"Determining the structure of bio-molecules such as proteins can often be a barrier to the development of novel drugs," said Prof. Lloyd Hollenberg, Thomas Baker Chair in Physical Biosciences at the University of Melbourne.

"By using quantum sensing to image individual atoms in a bio-molecule, we hope to overcome several issues in conventional biomolecule imaging, " Prof Hollenberg said.

State-of-the-art techniques create a crystal of the molecule to be studied and use X-ray diffraction to determine the molecules' average structure. However, the crystalisation and averaging processes may lead to important information being lost. Also, not all bio-molecules can be crystalised – particularly proteins associated with cell membranes, which are critical in the development of new drugs.

"Our system is specifically designed to use a quantum bit as a nano-MRI machine to image the structure of a single protein molecule in their native hydrated environments," added Prof Hollenberg.

"As part of our research in quantum computing we have also been working on the nearer-term applications of atomic-based quantum technology investigating the use of a single quantum bit as a highly sensitive magnetic field sensor," says Prof. Hollenberg.

Atomic qubits can be made to exist in two states at the same time, a disturbingly strange property that not only underpins the power of a quantum computer, but also the sensitivity of qubits as nano-sensors.

"In a conventional MRI machine large magnets set up a field gradient in all three directions to create 3D images; in our system we use the natural magnetic properties of a single atomic qubit," says University of Melbourne PhD researcher Mr. Viktor Perunicic, who was the lead author on the paper.

"The system would be fabricated on-chip, and by carefully controlling the quantum state of the qubit probe as it interacts with the atoms in the target molecule, we can extract information about the positions of atoms by periodically measuring the qubit probe and thus create an image of the molecule's structure." says Mr. Peruncic.

"The system could be constructed and tested relatively quickly using diamond-based qubits. However, to capture really high resolution molecular images in the longer term, CQC2T's silicon-based qubits might have the advantage because they have very long quantum coherence," said Prof. Hollenberg.

"The construction of such a quantum MRI machine for single molecule microscopy could revolutionise how we view biological processes at the molecular level, and could lead to the development of new biotechnology and a range of clinical applications."

###

Media Contact

Nerissa Hannink
[email protected]
61-430-588-055
@unimelb

http://www.unimelb.edu.au

Share12Tweet7Share2ShareShareShare1

Related Posts

New Study Uncovers How a Single Protein Rewires Leukemia Cells to Drive Their Growth

September 26, 2025

The Importance of Advancing from Chiral Molecular Macrocycles to Chiral Topological Macrocycles

September 26, 2025

Mapping Disease-Linked Neurons in the Entorhinal Cortex-Hippocampal Circuit Throughout Alzheimer’s Progression

September 26, 2025

How Individual Differences, Vaccination Impact Disease Risk

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    79 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    55 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Study Uncovers How a Single Protein Rewires Leukemia Cells to Drive Their Growth

The Importance of Advancing from Chiral Molecular Macrocycles to Chiral Topological Macrocycles

Mapping Disease-Linked Neurons in the Entorhinal Cortex-Hippocampal Circuit Throughout Alzheimer’s Progression

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.