• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The bright side of an infectious protein

Bioengineer by Bioengineer
January 25, 2018
in Biology, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: MPI-CBG

Prions are self-propagating protein aggregates that can be transmitted between cells. The aggregates are associated with human diseases. Indeed, pathological prions cause mad cow disease and in humans Creutzfeldt-Jakob disease. The aggregation of prion-like proteins is also associated with neurodegeneration as in ALS. The regions within prion-like proteins that are responsible for their aggregation were termed prion-like domains. Despite the important role of prion-like domains in human diseases, a physiological function has remained enigmatic. Researchers at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), the Biotechnology Center of the TU Dresden (BIOTEC), and the Washington University in St. Louis, USA have now identified for the first time a benign, albeit biologically relevant function of prion domains as protein specific stress sensors that allow cells to adapt to and survive environmental stresses. Uncovering the physiological function is an essential first step towards closing a gap in understanding the biological role of prion domains and their transformation into a pathological disease-causing state. The discoveries were published in Science.

The aggregation of prion-like proteins is associated with human diseases. Their infectious behavior is comparable to the spread of a viral infection. This raises the question of why evolution has kept these proteins around: are these sequences good for anything? In their study, the team around research group leader Prof. Simon Alberti from the MPI-CBG focused on the yeast prion protein Sup35, which has a long-standing history as a role model for prion research. They found that the prion-domain of Sup35 acts like a stress sensor that triggers the formation of protective protein droplets and gels when cells are exposed to harsh conditions.

When cells are stressed, for example because they are starved of nutrients, their energy level drops. This leads to a decrease of the cytosolic pH value – the cells acidify. In response, cell division stops, the metabolism shuts down and cells enter into stand-by mode. When the stress is over, cells must rapidly reprogram their metabolism and restart growth and division. Prof. Simon Alberti and his colleagues found out that the Sup35 prion domain is important for stress survival. "We found that cells lacking the prion domain show a growth defect when recovering from stress", summarizes Titus Franzmann, the first author of the study. The scientists discovered that the prion domain of Sup35 senses the acidic pH of the cytosol and then drives the formation of protein droplets that protect Sup35 from damage. "To store the protein the droplets can even advance into a gel-like structure", says co-author Marcus Jahnel from the biophysics group of Prof. Stephan Grill at the BIOTEC. These protein droplets – that form in the cytoplasm similar to condensing water droplets – can dissolve again, enabling the cell to reuse the Sup35 protein when it restarts growth. Additionally, colleagues from the Washington University in St. Louis predicted the sequences of the amino acids responsible for Sup35 sensing changes in the cytoplasmic pH value. In this context, Rohit Pappu, Edwin H. Murty Professor of Biomedical Engineering at Washington University, noted that: "Uncovering the molecular components that confer these adaptive abilities of Sup35 has also important implications for understanding cells on a molecular level and adopting these principles for building synthetic systems".

From an evolutionary standpoint, the Sup35 condensates are really interesting, since they are conserved among distantly related yeast that diverged almost 400 million years ago. This suggests that droplet and gel formation may be an ancestral function of the Sup35 prion domain. Titus Franzmann concludes: "The study suggests that prion domains are protein-specific stress sensors that allow cells to respond to specific environmental conditions. In that way, we could show for the first time a positive function of a prion domain that has often only been associated with disease-causing aggregates. So maybe that's the reason why evolution has kept them for so long."

###

Original publication

Titus M. Franzmann, Marcus Jahnel, Andrei Pozniakovsky, Julia Mahamid, Alex S. Holehouse, Elisabeth Nüske, Doris Richter, Wolfgang Baumeister, Stephan W. Grill, Rohit V. Pappu, Anthony A. Hyman und Simon Alberti

Phase separation of a yeast prion protein promotes cellular fitness, Science, (359) 5 January 2018.

Media Contact

Simon Alberti
[email protected]
49-351-210-2663
@maxplanckpress

http://www.mpg.de

Original Source

https://www.mpi-cbg.de/news-events/latest-news/article/news/the-bright-side-of-an-infectious-protein/ http://dx.doi.org/10.1126/science.aao5654

Share12Tweet8Share2ShareShareShare2

Related Posts

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026
Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.