• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Biochemists feed ‘poison pill’ to deadly virus with a funny name

Bioengineer.org by Bioengineer.org
January 25, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

It has a funny name – coxsackievirus – but there's nothing funny about how this tiny germ and its close relatives sicken their hosts.

Colorado State University researchers led by Olve Peersen, a professor in the Department of Biochemistry and Molecular Biology, have designed a genetic modification to one type of coxsackievirus that strips its ability to replicate, mutate and cause illness. They hope their work could lead to a vaccine for this and other viruses like it.

The results are published in The Journal of Biological Chemistry, and co-authored with Marco Vignuzzi at Paris' Institut Pasteur. Peersen's group seeks to understand the complex biochemical replication machinery of positive-sense single-stranded RNA viruses, a group that includes coxsackievirus, poliovirus, dengue and Zika.

For their most recent work, the team focused on the coxsackievirus B3, which causes heart disease. (It is closely related to coxsackie A viruses, which cause hand, foot and mouth disease in children.)

Coxsackieviruses have relatively small genomes made of single-stranded RNA. The viral RNA encodes for about a dozen proteins, one of which is the enzyme responsible for making new copies of the virus.

In earlier work published in Proceedings of the National Academy of Sciences, Peersen and co-authors had discovered the exact chemical steps by which the RNA-dependent RNA polymerase copies the virus genome. During this process, the polymerase makes three or four random mistakes that allow the virus to continually evolve and survive.

The researchers have built upon this breakthrough to design a way to "outsmart Mother Nature," Peersen said, by reengineering one key part of the polymerase enzyme so the virus can't grow very rapidly in a cell. Their technology could lead to what's called a live-attenuated vaccine. Such vaccines contain a weakened version of the virus, purposely injected to trigger the production of antibodies and create immunity rather than cause disease.

The classic live-attenuated vaccine is for poliovirus, invented by Jonas Salk in the mid 20th century. But the process isn't foolproof. The simple RNA genome lets viruses make millions of copies within days, and many of those copies contain "mistakes," or mutations, that can slightly alter the vaccine virus and restore its ability to cause disease. That's one reason why RNA viruses are hard to eradicate and why some people get vaccine-induced sickness.

To minimize the chances of a vaccine-induced infection, the researchers changed one specific amino acid in the RNA polymerase (a phenylalanine) to another amino acid (a tryptophan).

First, they showed that the tryptophan caused the polymerase to make fewer mutations, and this in turn reduced its ability to replicate and cause disease. Second, even if the virus tries to mutate the change away, then it can no longer replicate, so the virus self-destructs – which is why the researchers call their modification a "genetic poison pill."

The demonstration of this poison pill in the coxsackievirus B3 could theoretically translate to other positive-sense RNA viruses, including those linked to asthma and to foot-and-mouth disease that is a major animal health concern in Europe and South America.

This past spring, Peersen received a new National Institutes of Health grant to continue testing the genetic modification in live animals, in partnership with researchers at the University of Wisconsin.

"We think it's going to work, but we have to show that it will," Peersen said. "Trying to outsmart Mother Nature is pretty daunting, especially in these viruses. There are ways that things happen you never anticipate, and the virus finds a way to survive."

###

Media Contact

Anne Ju Manning
[email protected]
970-491-7099
@ColoStateNews

Home

Share13Tweet7Share2ShareShareShare1

Related Posts

Tropical Bug’s Mysterious Flag-Waving Revealed as Clever Anti-Predator Strategy

Tropical Bug’s Mysterious Flag-Waving Revealed as Clever Anti-Predator Strategy

September 10, 2025
Unveiling LiF’s Complex Roles in Solid Electrolytes

Unveiling LiF’s Complex Roles in Solid Electrolytes

September 10, 2025

Scientists Reveal How COVID-19 Persistence in Cancer Patients Influences Treatment Success

September 10, 2025

Fetal and Maternal Cells: The Evolution of Cooperation and Competition in Life’s Earliest Partnership

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    61 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tropical Bug’s Mysterious Flag-Waving Revealed as Clever Anti-Predator Strategy

Unveiling LiF’s Complex Roles in Solid Electrolytes

Scientists Reveal How COVID-19 Persistence in Cancer Patients Influences Treatment Success

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.