• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

‘Switchable’ smart windows reduce energy consumption…

Bioengineer by Bioengineer
January 25, 2018
in Biology, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Eindhoven University of Technology

Smart windows that act as blinds in the summer and let all the sunlight through in the winter. That's the idea of the reflective windows Hitesh Khandelwal developed during his doctoral research at TU/e, that are able to reflect invisible infrared light but allow visible light through. In addition these windows can be 'switched on and off'. This new technology cuts the energy consumption for cooling and heating buildings by 12%. Khandelwal received his PhD for this innovation, on the basis of organic liquid crystals, on Thursday 11 May at Eindhoven University of Technology.

Heating, cooling and lighting buildings account for half the energy consumption in the built environment. Daylight plays an important role here, with incoming sunlight during the summer causing high indoor temperatures, which can lead to much more substantial use of air-conditioning in hotter countries. In the winter sunlight is a source of heating, which saves fuel costs.

Becoming dark or discolor

Windows that reflect sunlight have been around for a long time but a major disadvantage is that they often reflect visible light and therefore become darker and/or discolor. In addition, the windows are static, which means that they will always have a cooling effect, for example, even when this is not necessary, as in the winter. So if you have these windows, in the winter homes have to burn more fuel to maintain an equitable temperature.

On/off switch

The smart reflective windows developed by Khandelwal can keep out light with a wavelength of 700 nm to 1400 nm. This light is in the infrared range and invisible, but still contains nearly 50% of the energy from sunlight. The innovative thing about these windows is also that they can be switched on and off. Users can use an on/off switch to do this or make use of an automatic option on the basis of temperature sensors, for example.

Reflective layer

The reflective layer of the window contains organic liquid crystals, like those familiar to us in our smartphones, which can selectively reflect light of a certain wavelength if they are arranged in a special way. Applying an electrical charge, these molecules can be 'aligned' and reflect the sunlight. By adding different liquid crystal molecules, Khandelwal was able to block nearly 100% of the sunlight between 700 nm and 1400 nm, yet the transparency of the visible light was still around 90%, comparable with the transparency of double glazing.

Cars and greenhouses

The coating already works with optimum effect between two panes of glass. To bring down the costs, the doctoral student also developed prototypes of a coating that can be applied on existing panes. Apart from use in buildings, the smart windows are also suitable for reducing energy consumption in cars and greenhouses.

###

Media Contact

Xavier Theunissen
[email protected]
31-063-837-0739
@TUEindhoven

http://www.tue.nl/en

Original Source

https://www.tue.nl/en/university/news-and-press/news/10-05-2017-switchable-smart-windows-reduce-energy-consumption-significantly/

Share12Tweet7Share2ShareShareShare1

Related Posts

Two Keck Medicine of USC Hospitals Achieve ‘A’ Grade for Patient Safety from Leapfrog

Two Keck Medicine of USC Hospitals Achieve ‘A’ Grade for Patient Safety from Leapfrog

November 13, 2025

Review Reveals Non-Drug Solutions for Childhood Asthma

November 13, 2025

Epothilone-B Drives CNS Axon Regeneration Revealed

November 13, 2025

Macrophage Retrotransposons Linked to Lupus Risk

November 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Two Keck Medicine of USC Hospitals Achieve ‘A’ Grade for Patient Safety from Leapfrog

Review Reveals Non-Drug Solutions for Childhood Asthma

Epothilone-B Drives CNS Axon Regeneration Revealed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.