• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Microorganisms in the subsurface seabed on evolutionary standby

Bioengineer by Bioengineer
January 25, 2018
in Biology, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo: Stefan Braun. Graphic modified from Wikipedia and www.genesandhealth.org.

Researchers at the Center for Geomicrobiology at Aarhus University, Denmark, have sequenced the genomes of several microorganisms inhabiting the subsurface seabed in Aarhus Bay. The results reveal the extreme evolutionary regime controlling microbial life in the deep biosphere.

A life in slow motion

Microbial evolution is arrested in the subsurface seabed as cells are buried in under a continuously growing layer of deposited mud and their genetic material therefore remains unchanged during the millennia.

"This means that these buried microorganisms presumably have a very low adaptability, unlike the microbial life that otherwise surrounds us in our environment" says Kasper U. Kjeldsen, associate professor at the Center for Geomicrobiology, who participated in the research project.

Through genetic mutations microorganisms normally have the ability to develop new properties over a short time scale, thereby quickly adapting in response to their environment. But the researchers have shown that microbes grow in slow motion in the deep seabed with generation times of up to 100 years. Mutations therefore appear and spread very slowly in the subsurface populations. For comparison, intestinal bacteria typically have generation times of 20 minutes.

The microorganisms in the deep seabed live in an environment, which is extremely poor in food. Put simply, they chew on a lunch box, which has fed their ancestors for thousands of years, and the availability of energy is therefore minimal.

Buried alive

The microbial species we find in the deep seabed, are the same as those who lived at the seafloor for thousands of years ago. Unlike the majority of the members of surface community, these microorganisms survive burial deeper and deeper in to the subsurface.

It remains a mystery why these microorganisms have an inherent ability to grow under the extreme conditions that occur in the deep seabed.

The researchers hope that the new findings could ultimately help us to understand and reconstruct past environmental and climatic conditions based on analysis of the microbial species composition in deep marine sediment cores.

The discovery, which has changed our understanding of microbial life in the soil deep biosphere, was recentlt published in the highly acclaimed international journal Proceedings of the National Academy of Sciences of the United States America (PNAS).

###

CONTACT

Associate Professor Kasper U. Kjeldsen
Email: [email protected]
www: http://pure.au.dk/portal/en/
Phone: +45 8715 6506

Professor Andreas Schramm
Email: [email protected]
www: http://pure.au.dk/portal/en/
Phone: +45 8715 6541

Center for Geomicrobiology and Section for Microbiology, Department of Bioscience, Aarhus University.

Media Contact

Associate Professor Kasper U. Kjeldsen
[email protected]
0045-87-15-65-06
@aarhusuni

http://www.au.dk

Share12Tweet7Share2ShareShareShare1

Related Posts

Exploring LGBQ+ Veteran Health Research: 1994-2023

November 19, 2025
Engineering Ultra-Stable Proteins via Hydrogen Bonding

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025

Ultraviolet-C Laser Pulses Generated and Detected Femtoseconds

November 19, 2025

GPD1L’s Impact on Treg Infiltration and Lipid Metabolism

November 19, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring LGBQ+ Veteran Health Research: 1994-2023

Engineering Ultra-Stable Proteins via Hydrogen Bonding

Ultraviolet-C Laser Pulses Generated and Detected Femtoseconds

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.