• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Griffith University reveals world-first 3-D image of a protein…

Bioengineer by Bioengineer
January 25, 2018
in Biology, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Griffith University's Institute for Glycomics has made scientific history by determining the first three-dimensional image of a protein linked to the spread of cancer.

The world-first image is revealed today (Nov. 2) in the prestigious journal Nature Chemical Biology in a paper titled 'Functional and structural characterization of a heparanase', by the Institute's Director, Professor Mark von Itzstein, and his team.

Professor von Itzstein said the 3-D image shows the architecture and intimate atomic-level detail of a bacterial heparanase, an enzyme that degrades a sugar molecule known as heparan sulfate.

He said the functionally identical human enzyme is over-expressed in cancers and is known to be associated with angiogenesis — a process through which new blood vessels form from pre-existing vessels — inflammation and increased metastatic potential, making it a promising drug target.

Until now researchers from across the world have only be able to make a 'best guess' from computational studies of what the 3-D structure of this enzyme looked like.

"We have successfully crystallized and determined the structure of the enzyme by X-ray crystallography, making it the first reported heparanase X-ray crystal structure in the world," Professor von Itzstein said.

"This tells us exactly where substrates bind in the catalytic domain and we explored this region by mutating certain amino acids that kill the activity so that we can understand how the enzyme works.

"The bacterial and human heparanase share identical substrate preference and catalytic machinery, thus enabling our heparanase structure to be used in the drug discovery process in targeting the human enzyme."

Professor von Itzstein added that structural and functional analysis of this enzyme provided an exciting opportunity for structure-guided anti-cancer and anti-angiogenesis inhibitor discovery, particularly mechanism-based inhibitor discovery.

"This research has been 10 years in the making and we will now turn our focus to developing a novel anti-cancer drug," he said.

The Institute for Glycomics is the only one of its kind in Australia and only one of six in the world.

"Our research is a brave new frontier and we are making great advances towards the discovery of new drugs, vaccines and diagnostics for significant diseases, including various cancers," Professor von Itzstein said.

"We have grown from a handful of researchers to more than 180 of the best from across the world."

###

Share12Tweet7Share2ShareShareShare1

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.