• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers prevent type 1 diabetes in lab

Bioengineer by Bioengineer
January 20, 2015
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In new research published in Endocrinology, Thomas Burris, Ph.D., chair of pharmacological and physiological science at Saint Louis University, reports that his team has found a way to prevent type I diabetes in an animal model.

Type I diabetes is a chronic autoimmune disease that occurs when the body’s immune system destroys insulin producing pancreatic beta cells, resulting in insulin deficiency and hyperglycemia. Current treatments for type I diabetes focus on controlling blood sugar with insulin therapy and must continue throughout a person’s life.

Burris and his research team focused on blocking the autoimmune process that destroys beta cells and leads to diabetes, with the aim of developing therapies that can prevent the illness from developing rather than treating its symptoms.

“None of the animals on the treatment developed diabetes even when we started treatment after significant beta cell damage had already occurred. We believe this type of treatment would slow the progression of type I diabetes in people or potentially even eliminate the need for insulin therapy,” said Burris.

Scientists already knew that at least two types of immune “T-cells” contribute to the development of type I diabetes. However, the role of a third type, TH17, remained unclear.

In this study, researchers found that two nuclear receptors play critical roles in the development of TH17 cells, and that by targeting these receptors, they were able to stop autoimmunity from developing in several mouse models, sparing beta cells.

The team blocked the receptors (ROR alpha and gamma t) with SR1001 (a selective ROR alpha and gamma t inverse agonist developed by Burris), significantly reducing diabetes in mice that were treated with it.

These results confirm that TH17 cells likely play a key role in the development of type I diabetes and suggest that the use of drugs that target this cell type may offer a new treatment for the illness.

Story Source:

The above story is based on materials provided by Saint Louis University.

Share12Tweet8Share2ShareShareShare2

Related Posts

Personalized Guide to Understanding and Reducing Chemicals

February 7, 2026

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.