• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ancient super-eruptions in Yellowstone Hotspot track…

Bioengineer by Bioengineer
January 25, 2018
in Biology, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo taken by Marc Reichow, University of Leicester

Images of the Snake River Plain and research team available at: https://www.dropbox.com/sh/jqfwogc4yy5aje1/AABeZbko4OOkOs17_-oM6_RPa?dl=0

A number of giant super-eruptions between 8 and 12 million years ago that could be larger than the colossal eruptions known to have taken place at Yellowstone have been identified in the United States through research led by the University of Leicester.

The international research team suggests that while the number of volcanic eruptions thought to have originated from the central Snake River Plain in Idaho, USA is less than previously believed, the 12 recorded giant eruptions were likely 'significantly larger' than research has previously suggested.

Dr Tom Knott, Professor Mike Branney and Dr Marc Reichow, from the University of Leicester's Department of Geology's Volcanology Group, conducted the research with a team of international collaborators from the University of California, Santa Cruz, USA, the University of Copenhagen, Denmark and Idaho State University, USA.

Using a multi-technique approach, including whole-rock and mineral chemistries, palaeomagnetic data, and radio-isotopic dates, the team has been able to 'fingerprint' individual eruption deposits and correlate these over vast regions (e.g., 1000's km2).

In establishing widespread correlations, the team drastically reduced the number of eruptions previously thought to have originated from the central Snake River Plain by more than half.

The researchers have reported that one of the super-eruptions from the Yellowstone hotspot-track, defined as the Castleford Crossing eruption, occurred about 8.1 million years ago and estimate the eruption volume to have exceeded 1,900 km3. The single volcanic sheet covers an area over 14,000 km2 in southern Idaho, and is more than 1.3 km thick in the caldera of the super-volcano.

This is just one of 12 giant eruptions reported from the area by the Leicester team, who show that intense hotspot magmatism caused major crustal subsidence, forming the 100 km-wide Snake River Basin. The team also demonstrates that these eruptions were in fact significantly larger than previously thought and may rival those better known at Yellowstone.

Dr Knott said: "While it is well-know that Yellowstone has erupted catastrophically in recent times perhaps less widely appreciated is that these were just the latest in a protracted history of numerous catastrophic super-eruptions that have burned a track along the Snake River eastwards from Oregon to Yellowstone from 16 Ma to present.

"The size and magnitude of this newly defined eruption is as large, if not larger, than better known eruptions at Yellowstone, and it is just the first in an emerging record of newly discovered super-eruptions during a period of intense magmatic activity between 8 and 12 million years ago."

###

The paper, which is published in the Geological Society of America Bulletin, is based on Dr Knott's PhD research and funded by the Natural Environment Research Council (NERC) with the drilling of the Kimberly borehole funded by the International Continental Drilling Program (ICDP) and U.S. Department of Energy.

Several former University of Leicester undergraduates, including Mark Baldwin, Stuart Hatter, Liam McDonnell, Fabian Wadsworth and Luke Wooldridge, helped with the US fieldwork. They also enjoyed the opportunity of gaining experience through interacting with the international scientists, such as palaeomagnetists David Finn and Rob Coe of the University of California, Santa Cruz.

As their research continues the team is asking the question: "Is Yellowstone the dwindling member of a volcanic system that was much larger and much more violent during its adolescence in the Mid-Miocene (12-8 million years ago)?"

The paper, 'Mid-Miocene record of large-scale Snake River-type explosive volcanism and associated subsidence on the Yellowstone hotspot track: The Cassia Formation of Idaho, USA' published in the journal Geological Society of America Bulletin is available here:http://bulletin.geoscienceworld.org/content/early/2016/02/10/B31324.1.1.full.pdf+html

Media Contact

Dr Tom Knott
[email protected]
01-162-523-817
@UoLNewsCentre

http://www.leicester.ac.uk

Share12Tweet7Share2ShareShareShare1

Related Posts

Atrial Fibrillation’s Effects on CF-LVAD Patients

November 18, 2025
blank

Using CNNs to Assess Singing Instruction Effectiveness

November 18, 2025

Kaempferia parviflora’s Flavones Boost Melanogenesis by Blocking TPC2

November 18, 2025

Feeding Strategies for Children with Autism Explored

November 18, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Atrial Fibrillation’s Effects on CF-LVAD Patients

Using CNNs to Assess Singing Instruction Effectiveness

Kaempferia parviflora’s Flavones Boost Melanogenesis by Blocking TPC2

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.