• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers find key genetic driver for rare type of triple-negative…

Bioengineer by Bioengineer
January 25, 2018
in Biology, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Michigan Health System

ANN ARBOR, Michigan — For more than a decade, Celina Kleer, M.D., has been studying how a poorly understood protein called CCN6 affects breast cancer. To learn more about its role in breast cancer development, Kleer's lab designed a special mouse model – which led to something unexpected.

They deleted CCN6 from the mammary gland in the mice. This type of model allows researchers to study effects specific to the loss of the protein. As Kleer and her team checked in at different ages, they found delayed development and mammary glands that did not develop properly.

"After a year, the mice started to form mammary gland tumors. These tumors looked identical to human metaplastic breast cancer, with the same characteristics. That was very exciting," says Kleer, Harold A. Oberman Collegiate Professor of Pathology and director of the Breast Pathology Program at the University of Michigan Comprehensive Cancer Center.

Metaplastic breast cancer is a very rare and aggressive subtype of triple-negative breast cancer – a type considered rare and aggressive of its own. Up to 20 percent of all breast cancers are triple-negative. Only 1 percent are metaplastic.

"Metaplastic breast cancers are challenging to diagnose and treat. In part, the difficulties stem from the lack of mouse models to study this disease," Kleer says.

So not only did Kleer gain a better understanding of CCN6, but her lab's findings open the door to a better understanding of this very challenging subtype of breast cancer. The study is published in Oncogene.

"Our hypothesis, based on years of experiments in our lab, was that knocking out this gene would induce breast cancer. But we didn't know if knocking out CCN6 would be enough to unleash tumors, and if so, when, or what kind," Kleer says. "Now we have a new mouse model, and a new way of studying metaplastic carcinomas, for which there's no other model."

One of the hallmarks of metaplastic breast cancer is that the cells are more mesenchymal, a cell state that enables them to move and invade. Likewise, researchers saw this in their mouse model: knocking down CCN6 induced the process known as the epithelial to mesenchymal transition.

"This process is hard to see in tumors under a microscope. It's exciting that we see this in the mouse model as well as in patient samples and cell lines," Kleer says.

The researchers looked at the tumors developed by mice in their new model and identified several potential genes to target with therapeutics. Some of the options, such as p38, already have antibodies or inhibitors against them.

The team's next steps will be to test these potential therapeutics in the lab, in combination with existing chemotherapies. They will also use the mouse model to gain a better understanding of metaplastic breast cancer and discover new genes that play a role it its development.

"Understanding the disease may lead us to better ways to attack it," Kleer says. "For patients with metaplastic breast cancer, it doesn't matter that it's rare. They want – and they deserve – better treatments."

###

Note to patients: To learn more about existing treatment options for metaplastic breast cancer, call the U-M Cancer AnswerLine at 800-865-1125.

Additional authors: Emily E. Martin, Wei Huang, Talha Anwar, Caroline Arellano-Garcia, Boris Burman, Jun-Lin Guan, Maria E. Gonzalez

Funding: National Institutes of Health grants R01 CA125577, R01 CA107469, F30 CA196084, R25 GM086262, P30 CA46592

Disclosure: None

Reference: Oncogene, doi: 10.1038/onc.2016.381

Resources:

U-M Cancer AnswerLine, 800-865-1125
U-M Comprehensive Cancer Center, http://www.mcancer.org
Michigan Health Lab, http://www.MichiganHealthLab.org

Media Contact

Nicole Fawcett
[email protected]
734-764-2220
@UMHealthSystem

http://www.med.umich.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Ultra-Sensitive Sensors Swiftly Identify ‘Forever Chemicals’ in Water

September 25, 2025

Enhancing AI Accuracy in Medical Diagnosis Coding with Lookup Integration

September 25, 2025

Syntaxin-7 Drives EMT, Tumors via NF-κB

September 25, 2025

New Study Uncovers How Tumor “Stress Droplets” Drive Cancer Resistance and Reveals Ways to Disable Them

September 25, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    73 shares
    Share 29 Tweet 18
  • Physicists Develop Visible Time Crystal for the First Time

    71 shares
    Share 28 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    51 shares
    Share 20 Tweet 13
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultra-Sensitive Sensors Swiftly Identify ‘Forever Chemicals’ in Water

Enhancing AI Accuracy in Medical Diagnosis Coding with Lookup Integration

Syntaxin-7 Drives EMT, Tumors via NF-κB

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.