• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Validation of suspected somatic single nucleotide variations

Bioengineer by Bioengineer
January 25, 2018
in Biology, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Centre for Molecular Biology

It has been proposed that somatic gene variations (SNV) present in few brain cells could facilitate the development of neurodegenerative disorders like Alzheimer's disease. Testing that hypothesis requires DNA sequencing directly in brain cells or tissue rather than in blood cells. However, the identification of SNV by standard and reliable sequencing procedures does not work well when the number of cells bearing the specific SNV (or mutation) is very low within the tissue. In this way, another techniques, such as high-throughput methods, could be used. However, those methods can introduce errors in reading sequence alignments that can interfere with the identification of true somatic variations.

In this work, once a new SNV was identified using high-throughput methodologies, the bulk DNA lacking that particular SNV was eliminated by the use of a restriction nuclease that cleaves bulk DNA molecules but not the ones containing the specific SNV. In further steps, the uncleaved DNA was amplified and sequenced by a reliable (error-free) technique such as the Sanger's sequencing method (see Figure). By following this approach we have been able to achieve the validation of some somatic brain mutations.

###

This work has been published in the Journal of Alzheimer's Disease, volume 56(3), February 7, 2017 and it is the consequence of a close collaboration between several research groups working at the Centre for Molecular Biology "Severo Ochoa" (CSIC-UAM), University of Barcelona, CIBERNED, VHIR and Sygnis, a company developing molecular biology tools for genomics and proteomics. Grants from the BBVA Foundation, MICINN and also by the Queen Sophia Foundation have supported the study.

ABOUT THE JOURNAL OF ALZHEIMER'S DISEASE (JAD) The Journal of Alzheimer's Disease is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer's disease. The journal publishes research reports, reviews, short communications, book reviews, and letters-to-the-editor. Groundbreaking research that has appeared in the journal includes novel therapeutic targets, mechanisms of disease and clinical trial outcomes. The Journal of Alzheimer's Disease has an Impact Factor of 4.151 according to Thomson Reuters' 2014 Journal Citation Reports. The Journal is published by IOS Press.

Media Contact

Jesus Avila
[email protected]
34-911-964-564
@IOSPress_STM

http://www.iospress.com

Share12Tweet7Share2ShareShareShare1

Related Posts

CRISPR Advances: rAAV Vectors in Gene Editing

November 12, 2025

EEG and ECG Connectivity Shifts During Tilt Testing

November 12, 2025

Bayesian Electronics: Pillar of Trustworthy AI

November 12, 2025

Pyriproxyfen Exposure: Effects on Rat Ovarian Health

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CRISPR Advances: rAAV Vectors in Gene Editing

EEG and ECG Connectivity Shifts During Tilt Testing

Bayesian Electronics: Pillar of Trustworthy AI

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.