• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fibroblast growth factor signalling controls fin regeneration in…

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Unlike mammals, certain species of amphibians and fish have the remarkable ability to regenerate tissue. Advances in molecular biological analyses have allowed researchers to identify specific molecules and signalling mechanisms involved in tissue regeneration. Fgf signalling is one such key mechanism.

Associate Professor Atsushi Kawakami and colleagues at Tokyo Institute of Technology and the Graduate University for Advanced Studies (SOKENDAI) identified fgf20a and fgf3/10a as major fgf ligands in wound epidermis and blastemas, respectively. To observe the role of Fgf signalling in regeneration, they transplanted Fgf signalling-deficient mesenchymal cells into wild-type zebrafish. Their findings suggest that Fgf signals act directly on fin ray mesenchyme to form a blastema at the early pre-blastema stage and activate regenerative cell proliferation at the post-blastema stage. This further implies that the early epidermal Fgf20a and later blastemal Fgf3/10a could be responsible for the respective processes. Through gain-of-function analyses, they demonstrated that Fgf20a induces distal blastemal formation and Fgf3 promotes blastema cell proliferation. Their study highlights the distinct functions of Fgfs in wound epidermis and blastemas, acting cooperatively to regulate fin regeneration (Figure).

Fgf20 and Fgf3 are present in all vertebrate species, and further study may lead to clues on inducing tissue regeneration in mammals, including humans. Many challenges remain, however, such as determining what makes Fgf20 activate in wounded epidermis, and how cell proliferation leads to complete recovery of tissue shape and function.

###

Media Contact

Emiko Kawaguchi
[email protected]
81-357-342-975

http://www.titech.ac.jp/english/index.html

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.