• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

‘Yin and yang’ switch lies at the heart of animal stem cells

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © Manuel Irimia, CRG.

A molecular switch that flips between different versions of genes could be crucial for maintaining stem cells across all animals from simple flatworms to humans, according to a study from scientists at the Centre for Genomic Regulation (CRG) in Barcelona, that will be published on August 9, 2016, in the journal eLife.

Flatworms (also known as planarians) have an incredible capacity for self-renewal, with almost any part of their body able to regenerate a whole new worm in a matter of days. In collaboration with Jordi Solana and Nikolaus Rajewsky and other colleagues from the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) in Germany and the University of Toronto, CRG group leader Manuel Irimia studied the patterns of gene activity in stem cells in these unusual animals.

They found that they 'mix and match' certain parts of their genes in particular ways – a process known as alternative splicing*. The same analysis of flatworm cells that had changed (differentiated) into more specific cell types revealed a different mixture of gene parts.

Looking more closely, the team discovered that two families of molecules – CELF and MBNL – work as a kind of 'yin and yang' switch, enabling cells to flip between different patterns of alternative splicing. CELF molecules guide gene splicing patterns linked to self-renewal of stem cells, while MBNL factors favour differentiation.

The study builds on Irimia's previous research showing that MBNL proteins and alternative splicing patterns are important in human and mouse embryonic stem cells as they differentiate into other cell types.

Previously, scientists have discovered certain proteins, known as transcription factors, that are important for maintaining embryonic stem cells in mammals. However, these particular molecules do not play the same roles in the stem cells of invertebrate organisms such as flatworms, which split off from the ancestors of mammals around 600 million years ago, suggesting that they are quite new in evolutionary terms.

"Discovering that this kind of alternative splicing mechanism exists across such a wide evolutionary range suggests that it is very ancient, and may be equally important as transcription factors for giving animal stem cells their unique properties" says Irimia. "Furthermore, understanding how this 'yin and yang' switch is flipped and activates particular patterns of alternative splicing could one day lead to more improved methods for generating and differentiating stem cells, which could be used be used for regenerative medicine."

###

CRG and MDC are part of the EU-LIFE, an alliance of 13 top research centres in life sciences to support and strengthen European research excellence. Initiated in 2012, the alliance officially kicked off on the 29th of May 2013 at CRG Barcelona.

Notes to editor:

*Genes are the instructions used by cells to make protein molecules. However, this is not a straightforward list of instructions, and genes often contain several different options for certain parts. When a gene becomes active in a cell, it is 'read' into a related messenger molecule called RNA, containing the entire set of instructions. This is then cut up and pasted back together (spliced), to create the right set of instructions needed by that particular cell. By mixing and matching various parts of a gene for different purposes, known as alternative splicing, specific cell types can generate the exact instructions they require.

Media requests addressed to Dr. Manuel Irimia should be scheduled before August 9, the date the embargo lifts, as from that day on Dr. Irimia won't be reachable.

Media Contact

Annick Labeeuw
[email protected]
34-933-160-237
@CRGenomica

http://www.crg.es

Share12Tweet7Share2ShareShareShare1

Related Posts

Revolutionary ‘Heart Percentile’ Calculator Aids Young Adults in Understanding Their Long-Term Health Risks

Revolutionary ‘Heart Percentile’ Calculator Aids Young Adults in Understanding Their Long-Term Health Risks

November 17, 2025

Drug-Tolerant Persister Cells: From Lab to Clinic

November 17, 2025

Postpartum Care for Parents in NICU Settings

November 17, 2025

Gene Therapy Reveals Dystrophin Levels via Mass Spectrometry

November 17, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    114 shares
    Share 46 Tweet 29
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary ‘Heart Percentile’ Calculator Aids Young Adults in Understanding Their Long-Term Health Risks

Drug-Tolerant Persister Cells: From Lab to Clinic

Postpartum Care for Parents in NICU Settings

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.