• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Organism responsible for paralytic shellfish poisoning may affect fisheries

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

The toxic dinoflagellate, Alexandrium fundyense, is a photosynthetic plankton–a microscopic organism floating in the ocean, unable to swim against a current. New research by scientists at the University of Hawai'i at Manoa (UHM) School of Ocean and Earth Science and Technology (SOEST) suggests that ingestion of this dinoflagellate changes the energy balance and reproductive potential of a particular copepod–a small crustacean–in the North Atlantic, which is key food source for young fishes, including many commercially important species.

Though this dinoflagellate is responsible for paralytic shellfish poisoning, previous studies suggested that the copepod is highly tolerant of the dinoflagellate with no increase in mortality. However, with this new research, lead author, Vittoria Roncalli post-doctoral researcher at the UHM Pacific Biosciences Research Center (PBRC), and co-authors found the toxic dinoflagellate does indeed stress the copepod, Calanus finmarchicus, and impacts its energy balance. Thus, copepods feeding on the dinoflagellate have less energy available for life processes including growth, reproduction and creating essential fats (lipid biosynthesis).

In controlled laboratory experiments, the researchers fed different groups of copepods low doses or high doses of the toxic dinoflagellate and measured the physiological response using a novel molecular technique, known as RNA-Seq.

"In essence, we were able to identify the instructions that directed the copepod's response to its changing environment," said Roncalli. "By analyzing changes in the 'messenger RNA' profile we discovered which biological processes were affected."

To their surprise, they observed large-scale physiological responses in both the high and low dose diets. The copepod's energy balance was affected, even in the low dose treatment, and the effect on lipid biosynthesis was particularly unexpected.

Global climate change is affecting all environments on Earth, benefiting some organisms while hurting others. One trend is the increase in the frequency and magnitude of harmful algal blooms, such as blooms of the dinoflagellate Alexandrium fundyense, thus increasing the number and extent of fishery closures due to paralytic shellfish poisoning in the Gulf of Maine.

"Further, high-density harmful algal blooms could, at the population level, affect the number of copepods, thus affecting the food source which sustains important fisheries in the Atlantic," said Petra Lenz, researcher at PBRC and co-author of the study.

The researchers are currently working on a second study to assess the effect of the dinoflagellates on the early developmental stages of the copepod, C. finmarchicus. Furthermore, using this novel technique, they can now investigate how key zooplankton species respond physiologically to changes in temperature and food, and human influence on the ocean.

###

Media Contact

Marcie Grabowski
[email protected]
808-956-3151
@UHManoaNews

http://manoa.hawaii.edu

Share13Tweet8Share2ShareShareShare2

Related Posts

AI Enhances Endocytoscopy for Colorectal Lesion Detection

September 24, 2025

Narcissism, FOMO, and Social Media Addiction in College

September 24, 2025

Deep Learning Detects Newborn Pulmonary Hypertension Automatically

September 24, 2025

Teddy Bears as Conservation Tools: Why They Need a Fresh New Look

September 24, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    70 shares
    Share 28 Tweet 18
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • New Study Reveals the Science Behind Exercise and Weight Loss

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Enhances Endocytoscopy for Colorectal Lesion Detection

Narcissism, FOMO, and Social Media Addiction in College

Deep Learning Detects Newborn Pulmonary Hypertension Automatically

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.