• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Clarifying the mechanism for making blood cells

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

IMAGE: The proposed model for the mechanism of making blood cells from hemangioblasts is shown.

Credit: University of Tsukuba

In 1917, Florence Sabin, the first female member of the US National Academy of Sciences, discovered hemangioblasts, the common precursor cells for blood cells and blood vessel endothelia. Her discovery faced a great deal of critical opinions, but by the end of the 20th century, those opinions were overcome, and the existence of hemangioblasts had at long last come to be acknowledged. In the present day, the existence of hemangioblasts has been proven not only in chicken embryos, which Sabin had studied, but in the embryos of humans, mice, and fish as well. Furthermore, it has become clear that the precursor cells are present not only during the fetal period, but also in adult organisms. However, the mechanism by which hemangioblasts differentiated into blood cells and vascular endothelia remained a mystery in many aspects.

A research group led by Lecturer Makoto Kobayashi of the University of Tsukuba Faculty of Medicine, has managed to shed light on the puzzling mechanism by which hemangioblasts become blood cells. Although hemangioblasts are the common precursor cells for blood cells and vascular endothelia that are present during the fetal period, the discovery of hemangioblasts in adult organisms has begun to garner attention from the medical world.

In the research conducted by Kobayashi's group, mutant zebrafish in which the differentiation from hemangioblasts into blood cells was inhibited were isolated, and the responsible gene was identified to be histone demethylase LSD1. Furthermore, phenotype recovery experiments involving gene knockdown clarified that the point of action of LSD1 is the gene silencing of Etv2, a transciption factor gene required for hemangioblast formation. These results show that epigenetic gene silencing of Etv2 by LSD1 is important in determining the destinies for blood cell differentiation.

This phenomenon is the epigenetic control that makes hematopoetic stem cells and vascular endothelial cells, and further development of the results of this study could lead to future medical applications.

###

Media Contact

Masataka Watanabe
[email protected]
81-298-532-039

Share12Tweet7Share2ShareShareShare1

Related Posts

Shaping Light Using Nonlinear Angular Momentum with Flat Optics

Shaping Light Using Nonlinear Angular Momentum with Flat Optics

November 12, 2025
blank

Unraveling Melanism in Indian Leopards: A Genomic Study

November 12, 2025

Novel Non-Enzymatic Glucose Sensor Using Nickel-Cobalt-Zinc Composite

November 12, 2025

Marine Rotifers Recycle Microplastics Through Grazing Loop

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Shaping Light Using Nonlinear Angular Momentum with Flat Optics

Unraveling Melanism in Indian Leopards: A Genomic Study

Novel Non-Enzymatic Glucose Sensor Using Nickel-Cobalt-Zinc Composite

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.