• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UT Southwestern scientists find potential treatment for Friedreich’s ataxia

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 3 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

DALLAS – Feb. 16, 2016 – Researchers at UT Southwestern Medical Center have identified synthetic RNA and DNA that reverses the protein deficiency causing Friedreich's ataxia, a neurological disease for which there is currently no cure.

Friedreich's ataxia results from modifications to DNA sequences that prevent cells from producing enough of a needed protein called frataxin. The lack of frataxin can result in a variety of problems that include loss of muscle control, fatigue, vision or hearing impairment, slurred speech, and serious heart conditions.

Using synthetic RNA or DNA, researchers have identified a way to allow normal frataxin production to resume.

"The synthetic DNA or RNA prevents the mutant sequence from bending back and blocking the frataxin gene. This action activates the frataxin gene, which then makes frataxin RNA and protein at normal levels," said Dr. David Corey, Professor of Pharmacology and Biochemistry. "In addition, our approach is selective for targeting the frataxin gene FXN and does not affect other genes."

In contrast to the CRISPR genomic editing technique, which requires modifications to genes, the molecules in this study are synthetic. The DNA and RNA belong to classes of molecules that already are being used clinically, making development of a new therapy more straightforward, said Dr. Corey, who holds the Rusty Kelley Professorship in Medical Science.

For use in Friedreich's ataxia, the remaining challenge will be to adequately deliver the synthetic molecules to tissues that are affected by the disease, but those challenges are being addressed by existing clinical programs targeting Huntington's disease and spinal muscular atrophy, Dr. Corey said.

About one in 50,000 people have Friedreich's ataxia, and typical onset is between 5 and 18 years of age, according to the National Institute of Neurological Disorders and Stroke. The disease is caused by cells making too little of the protein frataxin, although the proteins that are made are considered normal.

"The problem arises because of a mutation within the frataxin gene FXN that does not code for protein. In this case, the mutation causes the synthesis of a longer piece of RNA. This longer sequence binds the DNA and gums up the works, blocking RNA production needed to produce the frataxin protein," Dr. Corey said.

The findings appear in the journal Nature Communications.

###

Other UT Southwestern authors include Dr. Masayuki Matsui, Assistant Instructor of Pharmacology, and Liande Li, research scientist in Pharmacology.

Support for the research came from RaNA Pharmaceuticals, the Robert A. Welch Foundation, the Friedreich's Ataxia Research Alliance and the National Institute of General Medical Sciences.

UT Southwestern has established the Peter O'Donnell Jr. Brain Institute, a comprehensive initiative dedicated to better understanding the basic molecular workings of the brain and applying these discoveries to the prevention and treatment of brain diseases and injuries.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty has included six who have been awarded Nobel Prizes since 1985. The faculty of almost 2,800 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in about 80 specialties to more than 100,000 hospitalized patients and oversee approximately 2.2 million outpatient visits a year.

This news release is available on our home page at http://www.utsouthwestern.edu/home/news/index.html To automatically receive news releases from UT Southwestern via email, subscribe at http://www.utsouthwestern.edu/receivenews

Media Contact

Gregg Shields
[email protected]
214-648-3404
@UTSWNews

http://www.swmed.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

USC Scientists Secure $8 Million NIH Grant to Develop Innovative Alzheimer’s Drug

September 23, 2025

Exploring Factors Behind Decline of Hispanic Mortality Advantage

September 23, 2025

Provider Misperceptions, Rather Than Knowledge or Profit Motives, Fuel Inappropriate Antibiotic Overuse for Childhood Diarrhea in India

September 23, 2025

New Guidelines for Anemia Treatment in Kidney Disease

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

USC Scientists Secure $8 Million NIH Grant to Develop Innovative Alzheimer’s Drug

Exploring Factors Behind Decline of Hispanic Mortality Advantage

Provider Misperceptions, Rather Than Knowledge or Profit Motives, Fuel Inappropriate Antibiotic Overuse for Childhood Diarrhea in India

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.