• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Exploring synapses with a gigantic advantage

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

How does memory occur? And what about movement, or thinking? One key element to understand all these brain functions are the synapses. A synapse is the contact point between two neurons, where a signal is transmitted one-way, from one neuron to another. Specifically, from the pre-synaptic part of one neuron, to the post-synaptic part of another neuron. This communication process involves many types of proteins, and allows us, for example, to memorize a friend's name. Moreover, synapses do not just pass 'messages' from one neuron to another, but also keep the strength of transmitting such 'messages' for a short or a long period of time, thus playing a main role in memory formation.

Synaptic malfunction is thought to underlie the early stages of neuro-degenerative diseases, like Parkinson's and Alzheimer's diseases. Because of that, understanding the disease progression inside the synapse can lead to the development of drugs to control such diseases. However, a problem when studying synapses is that they are too small for direct access with recording tools. Even with a powerful microscope, it is difficult to see what is happening within a single synapse. But researchers from the Okinawa Institute of Science and Technology Graduate University (OIST) and Doshisha University have found a way around this problem. They have discovered a method to create a synapse that is large enough to allow them to directly monitor events occurring inside the synaptic structure.

In an article published in The Journal of Neuroscience, Dr Dimitar Dimitrov, from the OIST Cellular and Molecular Synaptic Function Unit headed by Prof Tomoyuki Takahashi, and colleagues describe a new method to grow giant synapses in culture dishes. They take fresh neuronal cells from specific regions of mice brains, grow them in a culture dish, and let them form giant synapses. These giant synapses are distinct from conventional small synapses. In these giant synapses, the pre-synaptic part of one neuron does not just 'touch' the post-synaptic part of another neuron, but wraps around the whole cell body of the post-synaptic neuron.

This breakthrough was made after many trials and errors. Scientists have studied synaptic mechanisms using fresh brain slices of mice or conventional culture preparations of small synapse. Freshly prepared brain slices can provide researchers with big synapses, but they deteriorate fast, and can be kept and studied only for one day. Such a short period does not allow researchers to perform experiments linked with the molecular composition of neurons and gene expression inside neurons: experiments that involve proteins created inside neurons. To top it all off, brain slices are densely packed with cells and not transparent enough to perform high resolution imaging studies.

Instead, conventional culture preparations are viable for longer periods and their simple cell layer organization makes them ideal for microscopy imaging. But the size of the individual synapse is too small to show in details what is happening inside the synapse.

Dimitrov and colleagues wanted to combine the advantages of the two techniques: big synapses in culture. "Initially, it was not possible to consistently reproduce these big synapses in culture," Dimitrov recollects. "Then we discovered some specific factors that are needed to promote the formation of the giant synapses."

The next step will be to use this model to explore how the proteins relate to the strength of the 'message' transmission in the pre-synaptic part of one neuron. To make such studies possible, scientists need to combine microscopic imaging techniques or genetic techniques, which allow them to understand the protein function, with other recording techniques. These latter techniques focus on the electrical proprieties of neurons. In other words, these are electrophysiological techniques that can simultaneously record the transmitted 'message'.

The giant synapse culture has already shown some encouraging results in this research direction. Scientists were able to record live images of the synapse in high resolution while simultaneously recording the electrical signals that were transmitted between the neurons. "This technique has a huge potential to help us understand how the synapses work. It will provide better, deeper understanding as to what is happening in the synapses," Prof Takahashi said.

###

Media Contact

Kaoru Natori
[email protected]
@oistedu

http://www.oist.jp/

Share14Tweet8Share2ShareShareShare2

Related Posts

Scientists Discover “Protective Switches” That Could Enable Transplantation of Damaged Livers

September 23, 2025
blank

Diamond Power: The Ideal Ally for Medical Implants

September 23, 2025

NBL1 Identified as a Critical Factor in Ovarian Cancer Metastasis

September 23, 2025

Connecting Climate Change, Urban Expansion, and Public Health: Insights from Foshan’s Epidemic

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Discover “Protective Switches” That Could Enable Transplantation of Damaged Livers

Diamond Power: The Ideal Ally for Medical Implants

NBL1 Identified as a Critical Factor in Ovarian Cancer Metastasis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.