• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Promiscuity slows down evolution of new species

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Clemens Kuepper

Promiscuity mixes up the gene pool and dilutes genetic differences between populations, slowing down the evolution of new species, says new research by an international team led by the University of Bath's Milner Centre for Evolution.

Darwin's theory of evolution showed that new species evolve when natural selection favours individuals with particular characteristics, allowing them to survive, breed and pass on their genes more successfully than their peers. Over time, a group of individuals can evolve to adapt to their local environment and form a new species.

Previously it was thought that sexual selection, when one sex prefers to mate with individuals with specific characteristics, was a strong driver of the formation of new species. One of these processes is the Fisherian runaway selection whereby arbitrary traits such as conspicuous feathers or fancy songs attract female's attention and hence improve the mating success of the bearer. Due to local variations in female preferences, nearby populations can rapidly differentiate and over time evolve into new species.

However new research in birds, published in the leading academic journal Evolution, overturns the conventional wisdom and suggests that promiscuity actually slows down the evolution of new species.

A research team led by the University of Bath, Cardiff University and the Max Planck Institute for Ornithology analysed the genetic structure of shorebird populations to track how they had evolved over time.

The team found that polygamous bird species, which breed with several partners during a season, are less diverse genetically within the species compared to monogamous species that only pair with one mate per season. This contradicts contemporary theories that predict rapid diversification and thus higher genetic differences between populations of polygamous shorebirds.

First author on the paper, Josie D'Urban Jackson, who is jointly supervised at University of Bath and Cardiff University, analysed the data, she said: "Our findings suggest that because of the pressure to find more than one mate, polygamous shorebirds may search large areas and therefore spread their genes as they go".

"This means they effectively mix up the gene pool by diluting any genetic differences between geographically distant locations, so that populations are less likely to diversify into new species over time".

"In contrast, monogamous species only have to find one partner to pair with each season and tend to come back to the same breeding sites over time. This means they can gradually adapt to their local environment which increases the chance that they will split off and form a new species."

Her supervisor, Professor Tamás Székely from the University of Bath's Milner Centre for Evolution, added: "We're very excited about these findings as this theory completely overturns conventional wisdom.

"You might think that birds choose mates arbitrarily if they are promiscuous, but most individuals prefer a certain type, just as some humans might prefer blonde or dark hair in a partner.

"Our study is consistent with previous findings that polygamous birds sometimes travel hundreds of kilometres to find a suitable partner.

"For example, in Madagascar, we found that the polygamous plovers were similar across the whole island, whereas the monogamous plovers have distinct genetic composition between nearby locations – showing the same pattern that our larger scale study just confirmed."

###

The research was funded by the Natural Environment Research Council and the Leverhulme Trust.

Media Contact

Vicky Just
[email protected]
44-012-253-86883
@uniofbath

http://www.bath.ac.uk

Share12Tweet8Share2ShareShareShare2

Related Posts

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026
Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.