• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Skeletons developed as chemistry of oceans changed, study shows

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Alina Konovalenko

Skeletons and shells first came into being 550 million years ago as the chemical make-up of seawater changed, a study suggests.

Ancient marine life may have developed from soft-bodied animals into creatures with hard body parts as oxygen levels rose and calcium and magnesium levels in prehistoric oceans changed, researchers say.

Until now, little was known about how skeletons and shells — which are made of calcium carbonate — first evolved, the team says.

Previous theories suggested that soft-bodied organisms had undergone a mass extinction, which allowed organisms with skeletons and shells to flourish.

However, researchers at the University of Edinburgh have found that the earliest lifeforms with hard body parts co-existed with closely related soft-bodied species.

The team examined a range of fossils unearthed from limestone rocks in Siberia, which formed millions of years ago from seawater with high levels of calcium carbonate.

They concluded that hard-bodied lifeforms were first present only in such environments where high levels of calcium carbonate allowed organisms to develop primitive hard parts.

Around 10m years later, the diversity of life of Earth increased rapidly — a period known as the Cambrian explosion — and hard-bodied life began to thrive. An increased threat from predators led lifeforms to develop new, more complex hard parts in environments that were less carbonate-rich, the team says.

The development of hard body parts — through a process called biomineralisation — marked a significant evolutionary advance from the previous world of soft-bodied life, the team says.

The study is published in the journal Proceedings of the Royal Society B. The research was carried out in collaboration with Lomonosov Moscow State University.

Professor Rachel Wood, of the University of Edinburgh's School of GeoSciences, who led the study, said: "How animals produced shells and skeletons is one of the major events in the evolution of life. We are only now starting to understand the processes underlying this revolution."

###

Media Contact

Corin Campbell
[email protected]
44-131-650-6382
@edinunimedia

http://www.ed.ac.uk

Share14Tweet8Share2ShareShareShare2

Related Posts

Stilbenes in Cancer Therapy: Molecular Targets, Progress

September 23, 2025
Volumetric Capacitance Transforms Organic Electrochemical Transistor Models

Volumetric Capacitance Transforms Organic Electrochemical Transistor Models

September 23, 2025

Metformin Combinations Show Promise in Lung Cancer

September 23, 2025

sRAGE Levels in Obese Adolescents with Metabolic Syndrome

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stilbenes in Cancer Therapy: Molecular Targets, Progress

Volumetric Capacitance Transforms Organic Electrochemical Transistor Models

Metformin Combinations Show Promise in Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.