• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

‘Self-sabotage’ prevents immune protection against malaria

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

IMAGE: Australian scientists have for the first time revealed how malaria parasites cause an inflammatory reaction that sabotages our body's ability to protect itself against the disease.

Dr. Axel Kallies (left) and…

Credit: Walter and Eliza Hall Institute of Medical Research

Australian scientists have for the first time revealed how malaria parasites cause an inflammatory reaction that sabotages our body's ability to protect itself against the disease.

The discovery opens up the possibility of improving new or existing malaria vaccines by boosting key immune cells needed for long-lasting immunity. This could even include vaccines that have previously been ineffective in clinical trials.

Researchers from Melbourne's Walter and Eliza Hall Institute discovered that the same inflammatory molecules that drive the immune response in clinical and severe malaria also prevent the body from developing protective antibodies against the parasite.

Dr Diana Hansen, Dr Axel Kallies and Dr Victoria Ryg-Cornejo led a research team that examined how the immune system responded to malaria infection caused by Plasmodium falciparum. The findings were published today in the journal Cell Reports.

Dr Hansen said it was the first time scientists had pinpointed why the immune system fails to develop immunity during malaria infection.

"With many infections, a single exposure to the pathogen is enough to induce production of antibodies that will protect you for the rest of your life," Dr Hansen said. "However with malaria it can take up to 20 years for someone to build up sufficient immunity to be protected. During that time people exposed to malaria are susceptible to reinfection and become sick many times, as well as spreading the disease."

Malaria has traditionally been difficult to manage because the body is not good at developing long-lasting immunity to the parasite, which has hampered vaccine development, Dr Hansen said.

"This was complicated by the fact that we didn't know whether it was the malaria parasite itself or the inflammatory reaction to malaria that was actually inhibiting the ability to develop protective immunity.

"We have now shown that it was a double-edged sword: the strong inflammatory reaction that accompanies and in fact drives severe clinical malaria is also responsible for silencing the key immune cells needed for long-term protection against the parasite."

Dr Kallies said inflammatory molecules released by the body to fight the infection were preventing protective antibodies from being made. "Long-term immunity to malaria and other pathogens requires antibody responses," he said.

"Specialised immune cells called helper T cells join forces with B cells to generate these protective antibodies. However, we showed that during malaria infection critical inflammatory molecules actually arrest development of helper T cells and therefore the B cells don't get the necessary instructions to make antibodies."

Malaria is one of the most serious human infectious diseases, with about 250 million clinical cases each year. Children are particularly susceptible to severe malaria because they have little or no immunity to the parasite. Severe malaria causes symptoms including anaemia, breathing difficulties, kidney failure and coma, and can quickly lead to death.

Dr Hansen said the findings could lead to new avenues in the search for effective malaria vaccines. "This research opens the door to therapeutic approaches to accelerate development of protective immunity to malaria and improve efficacy of malaria vaccines," she said.

"Until now, malaria vaccines have had disappointing results. We can now see a way of improving these responses, by tailoring or augmenting the vaccine to boost development of helper T cells that will enable the body to make protective antibodies that target the malaria parasites."

###

The research was supported by the National Health and Medical Research Council, the Australian Research Council, the Sylvia and Charles Viertel Charitable Foundation and the Victorian Government Operational Infrastructure Support Program.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Electrodynamics at Photonic Temporal Interfaces Unveiled

September 23, 2025

Hidden Threats: How “Forever Chemicals” PFAS Endanger Global Farmlands

September 23, 2025

Spotting Neonatal Peripheral Infusion Issues Early

September 23, 2025

Assessing Technology Impact on Agriculture and Resources

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Electrodynamics at Photonic Temporal Interfaces Unveiled

Hidden Threats: How “Forever Chemicals” PFAS Endanger Global Farmlands

Spotting Neonatal Peripheral Infusion Issues Early

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.