• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research reveals how PSD forms and why defects can cause autism

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

All neurons in our brain are wired via a micron-sized connection unit called synapse, and each synapse contains a layer of densely-packed, protein rich compartment called postsynaptic density (PSD), which is responsible for brain signal processing and transmission. Mutations of genes encoding PSD proteins are major causes of psychiatric disorders including autisms, schizophrenia, and intellectual disabilities (ID). While the existence of PSDs has been known to scientists for 60 years, how PSDs form and change in response to brain activities are poorly understood.

In a recent study, scientists from The Hong Kong University of Science and Technology (HKUST) discover that SynGAP and PSD-95, two abundance proteins in PSD that are known to cause autisms when mutated, can form an autonomously assembled network structure both in test-tube and in living cells. Most surprisingly, the SynGAP/PSD-95 assembly can form stable "oil-like" droplets in the midst of aqueous cytoplasm of living cells via a phenomena called phase-transition. This finding provides a possible answer for the long-lasting question of PSD formation in the field of brain science. Importantly, the HKUST team also found that defects of SynGAP or PSD-95 identified in autism patients alter the "oil-like" droplets formation of the complex and change the synaptic signaling activity of neurons.

Their research was published in the journal Cell on August 25, 2016. (DOI: 10.1016/j.cell.2016.07.008).

"SynGAP and PSD-95 are famous for their roles in learning and memory as well as their involvements in diseases like autisms and epilepsy when mutated, but exactly how these two proteins carry out their functions are not very clear" said Professor Mingjie Zhang, leader of the research group. "Our studies of the SynGAP/PSD-95 complex, via a multifaceted approach, led to an unexpected finding that living neurons can "borrow" a very fundamental phenomena called phase-transition to place different functional units at specific cellular locations". Prof. Zhang added, "everyone has seen phase transition in our daily life. Liquid water turning into ice is a form of phase transition. Living cells can selectively "pick" certain proteins or nucleic acids to undergo phase transition forming a non-membrane-enclosed cellular compartments, so their physiological functions can be regulated."

"Our work also provides mechanistic insights into why mutations altering the SynGAP/PSD-95 interaction can contribute to various brain disorders including seizure, autism, and ID, a spectrum of central nervous system diseases that have no treatments. We believe that our discovery will also inspire new ways to develop therapeutic methods for these devastating diseases to human society", said. Menglong Zeng, the paper's first author and a Ph.D. student in Prof. Zhang's laboratory.

"This study is only the beginning of teasing out how other proteins collectively contribute to the formation and brain activity-dependent alterations of PSD." Prof. Zhang said. "We are also interested in trying to find out whether other synapses, the neuron/muscle connections for an example, also adopt the phase-transition strategy to build their PSDs".

###

Media Contact

Johnny Tam
[email protected]
852-235-88556

http://www.ust.hk

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.