• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, January 13, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

$2 million grant to speed the development of new vector control products

Bioengineer.org by Bioengineer.org
January 23, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: LSTM

LSTM's Department of Vector Biology has received a major grant from the Bill & Melinda Gates Foundation for a research programme to develop novel test protocols to accelerate development and bring to market, the next generation of vector control products.

Faced with the rapidly developing problem of insecticide resistance among the mosquito populations responsible for the spread of malaria throughout Africa, the need for new insecticides and other vector control tools is critical. At present, the assays used to evaluate new products, and to assess the impact of insecticide resistance on their performance, are limited to basic laboratory tests. It is now known that these are poorly linked to the ultimate activity of the product or its effect on mosquitoes in the field. Led by Professors Philip McCall and Hilary Ranson at LSTM, and working in close collaboration with Professor David Towers' group at the University of Warwick's School of Engineering, the team aim to develop far a more robust and biologically relevant approach that will define accurately how a product is likely to function operationally. Entitled Accelerating time to market of new vector control tools by strengthening the Phase I evaluation, this US$2m Gates Foundation grant will support the application of video-tracking methods to quantify precisely the effects on mosquito behaviour of any chemical or device, allowing exceptional insight into its mode of action. The effects on mosquitoes will be evaluated beyond the current practice of measuring only the immediate killing effects, by exploring a range of potential additional delayed or sub-lethal effects that could eventually impact on malaria transmission.

The project is founded on technological advances the LSTM-Warwick team developed during their previous collaboration on the EU-funded Avecnet consortium, and closely allied to ongoing research funded by MRC and new collaboration MIRA, funded by the Wellcome Trust.

Professor McCall said: "The team aim to develop experimental procedures to record the impact of exposure to an active ingredient or formulated product over the lifetime of the mosquito. At the end of the three-year project, tests will be assembled into a defined pipeline for optimising impact assessment of potential new vector control products under laboratory controlled conditions and we will produce an updated manual for the laboratory analysis of vector control products for consideration by WHO".

Professor Towers added: "We hope the use of video-tracking and associated data analytics combined with the significant expertise at LSTM will lead to better understanding of vector control approaches and hence significantly improved products to combat the spread of malaria throughout Africa."

###

Media Contact

Clare Bebb
[email protected]
44-015-170-53135
@LSTMnews

http://www.liv.ac.uk/lstm

Share12Tweet7Share2ShareShareShare1

Related Posts

Intracellular Vesicles Excel in Drug Delivery and Protection

January 13, 2026

IDH1-R132H Autopalmitoylation Boosts Cancer Cell Activity

January 13, 2026

Innovations in Camptothecin Nanoformulations: Preparation to Clinical Use

January 13, 2026

Obesity’s Complex Risks on Breast Cancer Outcomes

January 13, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    73 shares
    Share 29 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Intracellular Vesicles Excel in Drug Delivery and Protection

IDH1-R132H Autopalmitoylation Boosts Cancer Cell Activity

Innovations in Camptothecin Nanoformulations: Preparation to Clinical Use

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.