• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

New study explains why MRSA ‘superbug’ kills influenza patients

Bioengineer.org by Bioengineer.org
January 21, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Sun et al., 2016

Researchers have discovered that secondary infection with the Methicillin-resistant Staphylococcus aureus (MRSA) bacterium (or "superbug") often kills influenza patients because the flu virus alters the antibacterial response of white blood cells, causing them to damage the patients' lungs instead of destroying the bacterium. The study, which will be published online August 15 ahead of issue in The Journal of Experimental Medicine, suggests that inhibiting this response may help treat patients infected with both the flu virus and MRSA.

Many influenza patients develop severe pneumonia as a result of secondary infections with MRSA. Over half of these patients die, even when treated with antibiotics that are usually capable of clearing MRSA infections. Keer Sun, an assistant professor at the University of Nebraska Medical Center, previously discovered that mice infected with influenza are susceptible to MRSA because the ability of their macrophages and neutrophils to kill bacteria by releasing hydrogen peroxide and other reactive oxygen species is suppressed. But it remained unclear why MRSA-infected influenza patients often die, even after receiving an appropriate antibiotic treatment.

Sun and colleagues now reveal that this may be because the patients' white blood cells cause extensive damage to their lungs. Though the macrophages and neutrophils of mice co-infected with influenza and MRSA were defective at killing bacteria, reactive oxygen species released by these cells induced the death of inflammatory cells within the lungs, lethally damaging the surrounding tissue. Inhibiting NADPH oxidase 2 (Nox2), the enzyme that produces reactive oxygen species in macrophages and neutrophils, reduced the extent of this damage and, when combined with antibiotic treatment, boosted the survival of co-infected mice.

"Our results demonstrate that influenza infection disrupts the delicate balance between Nox2-dependent antibacterial immunity and inflammation," says Sun. "This not only leads to increased susceptibility to MRSA infection but also extensive lung damage. Treatment strategies that target both bacteria and reactive oxygen species may significantly benefit patients with influenza-complicated MRSA pneumonia."

###

Sun, K., et al. 2016. J. Exp. Med. http://dx.doi.org/10.1084/jem.20150514

About The Journal of Experimental Medicine

The Journal of Experimental Medicine (JEM) features peer-reviewed research on immunology, cancer biology, stem cell biology, microbial pathogenesis, vascular biology, and neurobiology. All editorial decisions are made by research-active scientists in conjunction with in-house scientific editors. JEM provides free online access to many article types immediately, with complete archival content freely available online. Established in 1896, JEM is published by The Rockefeller University Press. For more information, visit jem.org. Follow us on Twitter at @JExpMed and @RockUPress.

Media Contact

Ben Short
[email protected]
212-327-7053
@RockUPress

http://www.rupress.org/

Share12Tweet7Share2ShareShareShare1

Related Posts

Genetic, Age, and Alcohol Factors Identify Hypertension Risk

October 29, 2025
Anoxia Triggers CRISPR-Cas Immunity in Mouse Gut

Anoxia Triggers CRISPR-Cas Immunity in Mouse Gut

October 29, 2025

Sodium Thiosulfate Eases Pancreatic and Liver Damage

October 29, 2025

Here’s a rewritten version of the news headline for a science magazine post: “The Impact of Sleep Deprivation on Your Brain”

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1289 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    199 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genetic, Age, and Alcohol Factors Identify Hypertension Risk

Anoxia Triggers CRISPR-Cas Immunity in Mouse Gut

Sodium Thiosulfate Eases Pancreatic and Liver Damage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.