• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

SLU researchers receive $416,000 to further work toward hepatitis B…

Bioengineer.org by Bioengineer.org
January 19, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Saint Louis University

With a $416,000 grant from the National Institutes of Health (NIH), SLU scientists will continue work to cure hepatitis B, building on significant findings published in two recent papers.

John Tavis, Ph.D., professor of molecular microbiology and immunology at Saint Louis University, aims to advance our understanding of how the hepatitis B drug replicates in order to develop a new drug that, in combination with other medications, could cure the viral infection.

With the new NIH funding, he will partner with co-principle investigator Marvin Meyers, Ph.D., director of medicinal chemistry for SLU's Center for World Health and Medicine. Meyers oversees the synthesis and design of promising new drug leads and their optimization into clinically effective drug molecules.

Experts estimate that up to 350 million people are chronically infected with the hepatitis B virus. Of those infected, about 1 million worldwide die from liver failure and liver cancer each year.

A person who is infected with hepatitis B virus can have billions of viruses per drop of blood. To cure a patient, a drug needs to reduce those levels to zero. Current drugs approved to treat the virus can reduce its numbers, make symptoms disappear for years and push it to the brink of extinction. But for most people, the medications can't kill the virus completely. As long as any virus remains, it can multiply if medications are stopped.

Because of this, hepatitis B treatment usually spans decades, with costs of $400 to $600 a month, if patients can afford the medication. Expensive and beyond the means of many, patients often do not receive any treatment at all. As a compromise measure, some patients opt to take medication for a short time, staving off for a few years the damage the illness will cause.

The hepatitis B virus replicates by reverse transcription, a process in which viral DNA is converted to RNA and then back to DNA by two vital viral enzymes. Most current drugs work by inhibiting the first of these enzymes. Tavis has focused his efforts on inhibiting the second: ribonuclease H (RNaseH).

Tavis's team recently published two papers that made significant advances toward this aim: One, published in Antiviral Research, reports the first complete biochemical analysis of the RNaseH enzyme and is key to efforts to screen for a new drug. The second, published in Antimicrobial Agents and Chemotherapy, reports that RNaseH inhibitors work synergistically with the main class of anti-hepatitis B drugs and with each other, as well as additively with a different class of experimental drugs. This means that combining RNaseH inhibitors with existing drugs actually improves how well each drug works.

Together, these papers strengthen the case that RNaseH inhibitors show promise as drug candidates, and that these inhibitors may work in combination with existing drugs.

Tavis notes that U.S. government funding has been key to these advances.

"This research is a result of 25 years of background studies in basic science funded by the NIH," Tavis said.

With the new grant, Tavis, Meyers and their teams hope to move the science another step closer to a cure.

###

Established in 1836, Saint Louis University School of Medicine has the distinction of awarding the first medical degree west of the Mississippi River. The school educates physicians and biomedical scientists, conducts medical research, and provides health care on a local, national and international level. Research at the school seeks new cures and treatments in five key areas: cancer, liver disease, heart/lung disease, aging and brain disease, and infectious diseases.

Media Contact

Carrie Bebermeyer
[email protected]
314-977-8015
@SLU_Official

http://www.slu.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

New JNCCN Study Introduces Simplified Method to Detect Harmful Medications in Older Cancer Patients

September 10, 2025

Government Benefits Overlook NICU Poverty Solutions

September 10, 2025

Comprehensive Study Assesses Cancer Diagnosis Pathway for Patients Presenting Non-Specific Symptoms

September 10, 2025

Unraveling High-Grade Endometrial Cancer: Integrating Molecular and Histologic Insights with the Cancer Genome Atlas Framework

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    56 shares
    Share 22 Tweet 14
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New JNCCN Study Introduces Simplified Method to Detect Harmful Medications in Older Cancer Patients

Government Benefits Overlook NICU Poverty Solutions

Comprehensive Study Assesses Cancer Diagnosis Pathway for Patients Presenting Non-Specific Symptoms

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.