• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Missed connections

Bioengineer.org by Bioengineer.org
January 19, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UCSB

Studies of brain activity typically draw their findings from measurement averages across entire groups of subjects. But new research out of UC Santa Barbara that highlights a novel method of characterizing and comparing the brain dynamics in individuals may signal a shift in that approach.

While UCSB scientists have demonstrated that the groups of regions of the brain that synchronize their activity during memory-related tasks get smaller and more numerous with age, the number of connections is as individual as the study participants. The research findings appear in the journal PLOS Computational Biology.

"We found that the way our brain organizes its communications changes as we age," said co-author Kimberly Schlesinger, a Ph.D. student at UCSB. "Even though we saw different patterns of brain activity in older people, we didn't see any changes in memory performance. This suggests that while older people have less synchronized communication across their entire brains, they may be compensating for this by using different strategies to successfully remember things."

The scientists used functional magnetic resonance imaging (fMRI) to record healthy people's brain activity during memory tasks, attention tasks and periods of rest. For each person, fMRI data was recast as a network composed of brain regions and the connections among them. The investigators then measured how closely different groups of connections changed together over time.

They found that regardless of whether a person is using memory, directing attention or resting, the number of synchronous groups of connections within one brain is consistent for that person. However, among multiple people, these numbers vary dramatically.

Specifically during memory, variations among people are closely linked to age. Younger participants had only a few large synchronous groups that link nearly the entire brain in coordinated activity, while older participants showed progressively more and smaller groups of connections, indicating loss of cohesive brain activity — even in the absence of memory impairment.

"This method elegantly captures important differences between individual brains, which are often complex and difficult to describe," said Elizabeth Davison, who initiated the work as an undergraduate at UCSB, where Schlesinger served as her mentor. Davison is now a graduate student at Princeton University. "The resulting tools show promise for understanding how different brain characteristics are related to behavior, health and disease."

The research originated from the Worster Summer Research Fellowship in UCSB's Department of Physics. Other UCSB members of the project team included physics professor Jean Carlson, neuroscientist Scott Grafton and then-postdoctoral scholar Danielle Bassett, now an assistant professor at the University of Pennsylvania.

Future work will investigate how to use individual brain signatures to differentiate between brains that are healthily aging and those with age-related impairments.

###

This study was supported by the David and Lucile Packard Foundation and the Institute for Collaborative Biotechnologies through a grant from the U.S. Army Research Office. Schlesinger was supported by the National Science Foundation Graduate Research Fellowship Program and by the Worster Summer Research Fellowship.

Media Contact

Julie Cohen
[email protected]
805-893-7220
@ucsantabarbara

http://www.ucsb.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Reassessing Dissociated Memories During Psilocybin Therapy

December 21, 2025

LRRK2 Mutation Causes Neurodegeneration via Microglial Inflammation

December 21, 2025

Cardiovascular Risks of Antipsychotics in Severe Illness

December 21, 2025

Exploring Gastric Healing: Pistacia Lentiscus Leaf Extract

December 21, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reassessing Dissociated Memories During Psilocybin Therapy

LRRK2 Mutation Causes Neurodegeneration via Microglial Inflammation

Cardiovascular Risks of Antipsychotics in Severe Illness

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.