• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Key player in cell metabolism identified

Bioengineer by Bioengineer
January 16, 2018
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Travis Stracker, IRB Barcelona.

Barcelona, 16 january 2018.- Researchers from the Genomic Instability and Cancer Laboratory at Institute for Research in Biomedicine (IRB Barcelona) have identified a key role for EXD2 in protein production in the mitochondria, the cellular organelles responsible for the majority of energy generation.

"We have provided extensive evidence that EXD2 is a mitochondrial protein and that its main function is to facilitate the production of proteins in the mitochondria," explains Travis H. Stracker, head of the laboratory.

This work challenges the interpretation of previous studies that suggested that EXD2 performs a DNA repair function in the nucleus. "However, at this point we can't rule out other possible functions", declares Stracker.

Published in Nature Cell Biology, the study presents the results from a collaborative multidisciplinary approach, using state of the art proteomics, metabolomics, biochemistry, cell biology and the development of the fruit fly, Drosophila melanogaster, to pinpoint the function of EXD2.

Cleaning up the energy production process

Scientists identified the mitochondrial ribosome (or mitoribosome), the cellular machine required for protein production in the mitochondria, as a major interactor of EXD2. "EXD2 targets messenger RNA to keep the mitoribosome "clean" until it is mature and ready to generate proteins. In the absence of EXD2, cells are severely defective for mitochondrial protein production," explains Joana Silva, first author of the study and former PhD student of the Genomic Instability and Cancer Laboratory.

EXD2's role in the mitoribosome is critical for suppressing the generation of Reactive Oxygen Species (ROS), that can arise due to mitochondrial defects, and facilitating normal development in Drosophila. Flies lacking EXD2 showed increased ROS levels, delayed development and reduced fertility.

"The results highlight the complexity of mitochondrial protein production and demonstrate that many levels of regulation remain to be elucidated", says Stracker.

Potential target for metabolic disorders and cancer therapy

These studies may have implications for the understanding and treatment of metabolic disorders, such as diabetes, and cancer. In relation to the latter, in recent years, the importance of mitochondrial energy generation in tumors has been revisited and the inhibition of protein production has been proposed to be a therapeutic target by many groups.

As EXD2 is an enzyme and required for mitochondrial translation, it is possible that targeting it could have antitumoral effects, something that will be tested in future experiments.

###

This study was supported by the Ministry of Economy, Industry and Competiveness (MINECO), as well as the Finnish Cultural Society and the Fundação para a Ciência e a Tecnologia that funded the theses of the first two authors.

The work was performed in collaboration with several other labs that made important contributions, including Aidan Doherty in the University of Sussex, Brian Raught in the University of Toronto, Oscar Yanes in the Universitat Rovira i Virgili and Andreu Casali and Lluís Ribas de Pouplana in the IRB Barcelona.

Reference article:

Joana Silva, Suvi Aivio, Philip A. Knobel, Laura J. Bailey, Andreu Casali, Maria Vinaixa, Isabel Garcia-Cao, E?tienne Coyaud, Alexis A. Jourdain, Pablo Perez-Ferreros, Ana M. Rojas, Albert Antolin-Fontes, Sara Samino-Gené, Brian Raught, Acaimo Gonza?lez-Reyes, Lluis Ribas de Pouplana, Aidan J. Doherty, Oscar Yanes and Travis H. Stracker

EXD2 governs germ stem cell homeostasis and lifespan by promoting mitoribosome integrity and translation

Nature Cell Biology (2018) doi:10.1038/s41556-017-0016-9

Media Contact

Sònia Armengou
[email protected]
34-934-037-255

http://www.irbbarcelona.org

Original Source

https://www.nature.com/articles/s41556-017-0016-9 http://dx.doi.org/10.1038/s41556-017-0016-9

Share12Tweet7Share2ShareShareShare1

Related Posts

Novel Nerve-Based Prognostic Model for Gastric Cancer

November 10, 2025
Dual Inhibition of Cooperative Motor Proteins Emerges as a Promising Strategy to Kill Cancer Cells

Dual Inhibition of Cooperative Motor Proteins Emerges as a Promising Strategy to Kill Cancer Cells

November 10, 2025

Kazakhstan’s Population Surge: Implications for Healthcare Workforce

November 10, 2025

Exploring How Bacteria Utilize ‘Sunscreen’ for Climate Adaptation

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel Nerve-Based Prognostic Model for Gastric Cancer

Dual Inhibition of Cooperative Motor Proteins Emerges as a Promising Strategy to Kill Cancer Cells

Kazakhstan’s Population Surge: Implications for Healthcare Workforce

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.