• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

ASK the enzyme: New potential targets for cancer

Bioengineer by Bioengineer
January 5, 2018
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Atsushi Matsuzawa

New understandings of how molecules affect the activity of an enzyme could lead to potential targets for the treatment of cancers and neurodegenerative diseases.

Atsushi Matsuzawa at Tohoku University and colleagues in Japan used gene silencing techniques and cell culture studies to investigate how molecules regulate an enzyme known as apoptosis signal-regulating kinase 1 (ASK1). Irregular ASK1 activation is linked to some cancers, and inflammatory and neurodegenerative diseases.

ASK1 is normally activated in the body by oxidative stress, a process that involves high rates of oxygen metabolism and happens in response to stress, toxins and infections.

A variety of molecules are known to regulate ASK1, but how they do this has not been clear.

An enzyme called protein arginine methyltransferase 1 (PRMT1) is known to encourage ASK1 to interact with a small protein called thioredoxin (Trx). This interaction effectively turns ASK1 off, interfering with this enzyme's role in initiating a cell-signalling process that ultimately leads to cell death and inflammation.

Matsuzawa and his team found that a protein called tripartite motif 48 (TRIM48) starts a process that labels PRMT1 for destruction inside cells. PRMT1 deficiency means that ASK1 and Trx can't interact, which turns ASK1 on.

When the researchers turned off the gene that codes for TRIM48, ASK1 failed to be activated by oxidative stress.

When the researchers made the same gene work excessively in cancer cells planted under the skin in mice, they observed cancer cell death and suppression of tumour growth, possibly due to ASK1 hyperactivation.

"PRMT1 upregulation may be caused by decreased TRIM48 expression or activity, leading to cancer development and progression," write the researchers in their study published in the journal Cell Reports. "Future studies should determine whether TRIM48 suppresses cancer development and progression through PRMT1 downregulation," they say.

Further studies could reveal that the pathways involved in regulating ASK1 activation could act as therapeutic targets in the treatment of ASK1-related diseases, the researchers conclude.

###

Media Contact

Hirata Yusuke
[email protected]
@TohokuUniPR

http://www.tohoku.ac.jp/en/

Original Source

https://www.tohoku.ac.jp/en/press/new_potential_cancer_targets.html http://dx.doi.org/10.1016/j.celrep.2017.11.007

Share20Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.