• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

ASK the enzyme: New potential targets for cancer

Bioengineer by Bioengineer
January 5, 2018
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Atsushi Matsuzawa

New understandings of how molecules affect the activity of an enzyme could lead to potential targets for the treatment of cancers and neurodegenerative diseases.

Atsushi Matsuzawa at Tohoku University and colleagues in Japan used gene silencing techniques and cell culture studies to investigate how molecules regulate an enzyme known as apoptosis signal-regulating kinase 1 (ASK1). Irregular ASK1 activation is linked to some cancers, and inflammatory and neurodegenerative diseases.

ASK1 is normally activated in the body by oxidative stress, a process that involves high rates of oxygen metabolism and happens in response to stress, toxins and infections.

A variety of molecules are known to regulate ASK1, but how they do this has not been clear.

An enzyme called protein arginine methyltransferase 1 (PRMT1) is known to encourage ASK1 to interact with a small protein called thioredoxin (Trx). This interaction effectively turns ASK1 off, interfering with this enzyme's role in initiating a cell-signalling process that ultimately leads to cell death and inflammation.

Matsuzawa and his team found that a protein called tripartite motif 48 (TRIM48) starts a process that labels PRMT1 for destruction inside cells. PRMT1 deficiency means that ASK1 and Trx can't interact, which turns ASK1 on.

When the researchers turned off the gene that codes for TRIM48, ASK1 failed to be activated by oxidative stress.

When the researchers made the same gene work excessively in cancer cells planted under the skin in mice, they observed cancer cell death and suppression of tumour growth, possibly due to ASK1 hyperactivation.

"PRMT1 upregulation may be caused by decreased TRIM48 expression or activity, leading to cancer development and progression," write the researchers in their study published in the journal Cell Reports. "Future studies should determine whether TRIM48 suppresses cancer development and progression through PRMT1 downregulation," they say.

Further studies could reveal that the pathways involved in regulating ASK1 activation could act as therapeutic targets in the treatment of ASK1-related diseases, the researchers conclude.

###

Media Contact

Hirata Yusuke
[email protected]
@TohokuUniPR

http://www.tohoku.ac.jp/en/

Original Source

https://www.tohoku.ac.jp/en/press/new_potential_cancer_targets.html http://dx.doi.org/10.1016/j.celrep.2017.11.007

Share20Tweet8Share2ShareShareShare2

Related Posts

miR-770-5p Regulates KLF4/EGFR via PRMT5

November 10, 2025
blank

New Genomic Tools Boost European Flax Breeding

November 10, 2025

BM-MSC Exosomes Modulate TUG1, Fight Leukemia

November 10, 2025

Evaluating Immunotherapy Response in Lung Cancer Patients

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

miR-770-5p Regulates KLF4/EGFR via PRMT5

New Genomic Tools Boost European Flax Breeding

BM-MSC Exosomes Modulate TUG1, Fight Leukemia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.