• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Yeast can be engineered to create protein pharmaceuticals

Bioengineer by Bioengineer
December 11, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Mingtao Huang/Chalmers

It took several years, but a research team headed by Professor Jens Nielsen at Chalmers University of Technology has finally succeeded in mapping out the complex metabolism of yeast cells. The breakthrough, recently published in an article in Nature Communications, means a huge step forward in the potential to more efficiently produce protein therapies for diseases such as cancer.

The market for pharmaceuticals that mimic the body's own proteins – protein-based therapeutics – is exploding. Some of them are relatively simple to manufacture in yeast-based cell factories. Insulin and HPV vaccine are two examples that are already under production, but other therapies, such as antibodies to various forms of cancer, are significantly more difficult to manufacture.

"They are currently produced using a cell factory based on a single cell from a Chinese hamster. It's an extremely expensive process. If we can get yeast cells to do the same thing, it will be significantly cheaper – perhaps 10% of what it costs today. Our vision is to eventually be able to mass-produce and supply the entire world with therapies that are too expensive for many countries today," says Jens Nielsen, professor of systems biology.

In collaboration with Associate Professor Dina Petrovic and Mathias Uhlén's research team at the Royal Institute of Technology in Stockholm, Jens Nielsen has been mapping out the complex metabolism of yeast cells for four years.

"We've been studying the metabolism of a yeast that we already know is a good protein producer. And we found the mechanisms that can be used to make the process even more efficient. The next step is to prove that we can actually produce antibodies in such quantities that costs are reduced."

The discussion has mainly been about cancer, but there are many other diseases, for example Alzheimer's, diabetes and MS, that could potentially be treated by yeast-based protein therapies. How distant a future are we talking about?

"Our part of the process is fast, but pharmaceuticals always take a long time to develop. It could be a possibility in five years, but should absolutely be on the market in ten," Nielsen says.

Jens Nielsen has been making headlines the past few months. In addition to his publication in Nature Communications, he has recently received three prestigious awards.

On 31 October he received the world's biggest award for innovation in alternative fuels for transportation – the Eric and Sheila Samson Prime Minister's Prize, in Israel. Alternative fuels? Yes, plain old yeast can be used for a lot, and Nielsen's award was for his contribution to processes for producing hydrocarbons from yeast, which will advance new biofuels. Earlier in October he received the prestigious Energy Frontiers Award from the Italian oil company Eni for the same type of research. And just a week before he left for Israel, he was awarded the Royal Swedish Academy of Engineering Sciences (IVA)'s gold medal for innovative and creative research in systems biology.

"Yeast is a superb modelling system. Almost everything in yeast is also found in humans. We have complete computer models of the metabolism of yeast, and we use the same type of models to study human metabolism," Nielsen explained when he received the IVA award.

More about making the metabolism in yeast more effective

The protein production of yeast cells comprises more than 100 different processes in which proteins are modified and transported out of the cell. Around 200 enzymes are involved, which makes it a very complex system to engineer. In order to optimize protein production, it is necessary to chart how these 200 enzymes function and work. In the study, this has been done by altering the genetic set of certain key genes, using advanced screening methods in combination with modern genome sequencing techniques.

###

Media Contact

Christian Borg
[email protected]
46-317-723-395
@chalmersuniv

http://www.chalmers.se/en/

Original Source

http://www.chalmers.se/en/news/pressreleases/Pages/default.aspx http://dx.doi.org/10.1038/s41467-017-00999-2

Share12Tweet8Share2ShareShareShare2

Related Posts

UniSA Pioneers National Pilot Program Enhancing Medication Safety in Aged Care

November 7, 2025
blank

Unraveling μ-Opioid Receptor Signaling Plasticity

November 7, 2025

Enhancing Nursing Students’ Pressure Injury Assessment Skills

November 7, 2025

Recombination and Transposons Influence Chironomus riparius Diversity

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UniSA Pioneers National Pilot Program Enhancing Medication Safety in Aged Care

Unraveling μ-Opioid Receptor Signaling Plasticity

Enhancing Nursing Students’ Pressure Injury Assessment Skills

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.