• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Research reveals how cells rebuild after mitosis

Bioengineer by Bioengineer
December 4, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Claudia Stocker VividBiology

When cells divide, they need to rebuild their nucleus and organise their genome. New collaborative research from the University of Bristol demonstrates how cells achieve this through the unexpected deployment of filamentous actin (F-actin) to the nucleus.

The research, published online in Nature Cell Biology, provides the first evidence that actin polymerisation in the nucleus helps in reshaping the nucleus and reorganising the genome after cell division (mitosis).

In mammals, including humans, the cell nucleus packages and protects the genome. When human cells divide, the nucleus is dissembled to allow segregation of the chromosomes. Once chromosome segregation is complete, new cells need to re-build their nucleus and organise their genome. This process, although essential for life, was poorly understood.

This work is in collaboration with Prof Robert Grosse's Laboratory (University of Marburg, Germany), who revealed the formation of transient and highly dynamic F-actin in the nucleus of daughter cells as they start rebuilding their nucleus after mitosis. The polymerisation of actin (F-actin) readily occurs in the cytoplasm of cells; where it serves a very important function in controlling cell shape and enabling cells to crawl around. Discovering this transient and dynamic F-actin in nucleus soon after cells division, gave a hint that it may be required for rebuilding the nucleus and re-organising the genome.

Alice Sherrard co-first author of this study and a PhD student with Dr Abderrahmane Kaidi, developed and implemented complementary and interdisciplinary methods to visualise nuclear structure and genome organisation after cells division. In so doing, Alice revealed that disruption of the formation of F-actin results in cells failing to expand their nuclear volume as well as their inability to de-compact their genome. Because of these defects, cells become inefficient in retrieving genetic information encoded in their DNA; thus, they divide slower.

Principal investigator Dr Abderrahmane Kaidi, a specialist in cancer biology at the University of Bristol's School of Cellular and Molecular Medicine, says this discovery advances our fundamental knowledge of genome regulation in space and time, and could have major implications in understanding cancer and degeneration.

"This research highlights the importance of the spatiotemporal control of genome organisation for normal cells function, and we continue to define the principals that regulate these processes and their impact on cancer and degeneration," said Dr Kaidi.

###

This collaborative study is funded by Human Frontiers Science Program, Medical Research Council and Wellcome Trust; and benefited greatly from the Bristol Wolfson Bioimaging (Biomedical Sciences), and the Bristol Electron Microscopy Unit (Chemistry).

Media Contact

Shona East
[email protected]
44-117-394-0160
@BristolUni

http://www.bristol.ac.uk

Related Journal Article

http://dx.doi.org/10.1038/ncb3641

Share12Tweet8Share2ShareShareShare2

Related Posts

Personalized Guide to Understanding and Reducing Chemicals

February 7, 2026

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.