• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New vaccine technique effectively fights breast cancer in mice

Bioengineer by Bioengineer
November 30, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: University of Copenhagen

A new vaccine technique can fight a certain type of breast cancer in mice. So-called HER2-positive breast cancer accounts for between 20 and 30 per cent of all cases of breast cancer in humans. Researchers from the University of Copenhagen and the University of Bologna now show that the same type of cancer can be fought in mice with help of their new vaccine.

In cases of breast cancer, the immune system has difficulties distinguishing between cancer cells and healthy cells. Therefore, it normally does not launch a protective immune response that can prevent cancer cells from growing and spreading. But the research group at the University of Copenhagen is able to change that by adding an antigen which is normally expressed on the cancer cells onto the surface of a virus-like particle. They thus inject the particle into the bodies of the mice.

'Our virus-like particle with the added cancer antigen makes the body believe it is under attack. This makes the immune system produce large amounts of antibodies targeted at the cancer antigen, which then fights the cancer cells in the mice', says Associate Professor and author of the study Adam F. Sander from the Department of Immunology and Microbiology.

In the study, which was published today in the scientific journal OncoImmunology, the researchers have documented the beneficial effect of their vaccine technique in several ways. Because their vaccine both has a preventive effect and works when cancer has already developed.

They have given the vaccine to two different groups of mice genetically coded to spontaneously develop two different types of breast cancer. In one group only half of the mice developed cancer, which was characterised by significantly fewer and smaller tumours than usual. In the second group none of the vaccinated mice developed cancer.

Depending on the genetic variation in the mice the vaccine thus prevented breast cancer from developing in 50-100 per cent of the cases.

In addition, the researchers examined the vaccine's effect on two groups of mice already suffering from cancer. They had either been injected with fragments of a tumour or human cancer cells.

The vaccine cured 80 per cent of the mice with tumour fragments. In the group with human cancer cells all of the mice developed cancer, but at a much slower pace than usual.

The researchers also took blood from the mice that produced the relevant antibodies and tested it on human cancer cells. Here too the effect was hard to miss. All the human cancer cells bound to the antibodies in the right way.

The present treatment of HER2-positive breast cancer involves administering large amounts of antibodies fighting the cancer over a long period of time. The treatment is expensive and has side effects, and the immune system may become intolerant to the antibodies, which eventually have no effect. The researchers believe their vaccine by comparison will cost markedly less if its effect translates to humans.

'What is exciting about our treatment technique is that it makes the body do the work. We do not inject foreign antibodies, but leave it to the body to produce them', says Postdoc and author of the study Susan Thrane.

The Danish research group behind the study is headed by Associate Professor Adam F. Sander, who last year helped establish the spinout NextGen Vaccines Aps based on their research into vaccine techniques. This summer they established a joint venture company named AdaptVac Aps together with the company ExpreS2ion.

This study is one of the first large results of this collaboration, and the researchers hope they will be able to go on to conducting clinical trials on humans before long.

###

Watch and download video about the research result here: https://vimeo.com/244792408

Media Contact

Associate Professor Adam Sander
[email protected]
45-30-11-15-29

http://healthsciences.ku.dk/

Original Source

http://healthsciences.ku.dk/news/2017/11/new-vaccine-technique-effectively-fights-breast-cancer-in-mice/ http://dx.doi.org/10.1080/2162402X.2017.1408749

Share12Tweet7Share2ShareShareShare1

Related Posts

Recovery Rates in Yemeni Children with Severe Malnutrition

October 13, 2025
Stable LiCl Electrolyte with In-Situ Anion Receptor

Stable LiCl Electrolyte with In-Situ Anion Receptor

October 13, 2025

Dietary Diversity Impacts Daily Life in Older Chinese

October 13, 2025

Enhanced Ethanol Oxidation via Pd–Ag Nanoparticles on WO3

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1233 shares
    Share 492 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Recovery Rates in Yemeni Children with Severe Malnutrition

Stable LiCl Electrolyte with In-Situ Anion Receptor

Dietary Diversity Impacts Daily Life in Older Chinese

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.