• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Understanding signaling pathways, fighting the spread of cancer

Bioengineer by Bioengineer
November 30, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Britt Schilling/University Medical Center Freiburg

The German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) has approved the renewal application for the Collaborative Research Center (CRC, Sonderforschungsbereich, SFB) 850 "Control of Cell Motility in Morphogenesis, Cancer Invasion and Metastasis". The CRC 850 has been running since January 1, 2010 and will enter its third and final funding period starting at the beginning of 2018. The DFG has assured a total of 12.7 million euros for the coming four years. Researchers from the Faculties of Biology and Medicine at the University of Freiburg along with the German Cancer Consortium, partner site Freiburg and the Max Planck Institute of Immunobiology and Epigenetics are collaborating in this CRC, which hitherto has brought forth more than 180 scientific publications. Prof. Dr. Christoph Peters, Director of the Institute of Molecular Medicine and Cell Research and Scientific Director of Comprehensive Cancer Center Freiburg (CCCF) is the spokesperson.

Cell motility describes the cells' ability to move actively. Uncontrolled cell motility is one of the key characteristics of malignant tumors. It allows the tumor cells to invade neighboring tissue, spread through the body and form colonies or so-called metastases in foreign organs. These metastases pose a huge problem in cancer medicine and are responsible for the majority of cancer related deaths. Cell motility is controlled by central signaling pathways that are active during embryonic development and may be reactivated in malignant cancer cells. They play an essential role in the formation and spread of tumors. The aim of the SFB 850 is to better understand the molecular mechanisms of these signaling pathways and to apply this knowledge to control the motility of cells, for example, through already existing drugs. These insights may also serve as basis for the development of new therapeutic strategies for inhibiting the invasion of cancer cells into healthy tissue and thereby to prevent the formation and growth of metastases.

The scientific background of the participating groups is wide ranging – from basic research in developmental biology to clinical cancer research in the CCCF, enabling a direct review of the clinical relevance of the obtained findings.

###

Further information: http://www.sfb850.uni-freiburg.de/en

Contact:

Institute of Molecular Medicine and Cell Research
University of Freiburg

Media Contact

Prof. Dr. Christoph Peters
[email protected]
49-761-203-9601

Startseite

Original Source

https://www.pr.uni-freiburg.de/pm-en/2017/understanding-signaling-pathways-fighting-the-spread-of-cancer?set_language=en

Share12Tweet7Share2ShareShareShare1

Related Posts

Recovery Rates in Yemeni Children with Severe Malnutrition

October 13, 2025
Stable LiCl Electrolyte with In-Situ Anion Receptor

Stable LiCl Electrolyte with In-Situ Anion Receptor

October 13, 2025

Dietary Diversity Impacts Daily Life in Older Chinese

October 13, 2025

Enhanced Ethanol Oxidation via Pd–Ag Nanoparticles on WO3

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1233 shares
    Share 492 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Recovery Rates in Yemeni Children with Severe Malnutrition

Stable LiCl Electrolyte with In-Situ Anion Receptor

Dietary Diversity Impacts Daily Life in Older Chinese

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.