• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Decoding the molecular mechanisms of ovarian cancer progression

Bioengineer by Bioengineer
November 28, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

(PHILADELPHIA) — Ovarian cancer is the most lethal gynecologic malignancy in the United States, resulting in an estimated 14,100 deaths and 22,500 new cases in 2017 alone. This high mortality is primarily caused by resistance to therapy and the diagnosis of ovarian cancer after it has already metastasized, which occurs in approximately 80 percent of patients.

A new study from Sidney Kimmel Cancer Center (SKCC) at Thomas Jefferson University investigator Christine Eischen, PhD, provides new insights into the mechanisms contributing to ovarian cancer. The Eischen group focused on the role of long non-coding RNAs (lncRNAs), which have emerged as key regulators of genes. By evaluating the molecular changes that occur in large cohorts of ovarian cancer patients, the researchers were able to identify several lncRNAs that are linked to the disease. These lncRNAs were reproducibly altered in patients, and are responsible for a shift in cellular function that contributes to the metastatic properties of the cancer cells.

The research, which appears in a recent issue of Nature Communications, was spearheaded by lead author and bioinformatician Dr. Ramkrishna Mitra, a postdoctoral associate in the Eischen laboratory. Dr. Mitra undertook a large-scale bioinformatics approach to evaluate over 700 ovarian cancer molecular profiles from four patient cohorts. This analysis led to the identification of several lncRNAs that are overexpressed in a particular subset of ovarian cancer, those that are thought to be the most aggressive.

Further analysis revealed that overexpression of these lncRNAs in turn changed the expression of proteins that regulate a well-known developmental process, termed the epithelial-to-mesenchymal transition (EMT). EMT is important for cell migration and invasion – two characteristic of metastatic cancer cells — strongly suggesting that the link between lncRNAs and EMT contributes to the metastatic progression of ovarian cancer.

Following up on this idea, the researchers found that one of the lncRNAs was directly implicated in patient outcomes. "Overexpression of one of the lncRNAs, DNM30S, was significantly correlated with worse overall ovarian cancer patient survival," said Dr. Eischen.

Based on these observations, the researchers suggest that targeting of the lncRNAs might represent a viable treatment strategy for ovarian cancer. To test this idea, they experimentally reduced the expression of the DNM30S lncRNA, which resulted in reduced ovarian cancer cell migration and invasion. In future work, the Eischen laboratory aims to further understand the role of lncRNAs in ovarian cancer, and potentially translate their findings into clinical applications to reduce ovarian cancer metastasis.

###

For further information, see: Mitra R, Chen X, Greenawalt EJ, Maulik U, Jiang W, Zhao Z, and Eischen CM. 2017. Decoding critical long-coding RNA in ovarian cancer epithelial-to-mesenchymal transition. Nat Commun. doi:10.1038/s41467-017-01781-0. Published online November 17, 2017.

Media Contact

Edyta Zielinska
[email protected]
215-955-7359
@JeffersonUniv

http://www.jefferson.edu/

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.