• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Encouraging oxygen’s assault on iron may offer new way to kill lung cancer cells

Bioengineer by Bioengineer
November 22, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Blocking the action of a key protein frees oxygen to damage iron-dependent proteins in lung and breast cancer cells, slowing their growth and making them easier to kill. This is the implication of a study led by researchers from Perlmutter Cancer Center at NYU Langone Health, and published online November 22 in Nature.

Human cells contain 48 proteins that are known to depend on complexes of iron and sulfur to function. Dismantled whenever they encounter oxygen, these iron-sulfur clusters must be constantly replaced if normal cells are to survive in high-oxygen environments like the lungs, and even more so if lung cancer cells are to grow with abnormal speed.

The current study shows that lung adenocarcinoma cells survive this oxygen threat by producing more of a protein called NFS1, which harvests sulfur from the amino acid cysteine to make iron-sulfur clusters. The researchers also found that breast cancer cells that have spread to the lungs dial up NFS1 production upon arriving in a high-oxygen environment, while cells remaining in the breast do not.

"Our data support the notion that NFS1 provides a central protection for cancer cells against oxygen, and we hope to find ways to take it away," says lead study author Richard Possemato, PhD, assistant professor in the Department of Pathology at NYU School of Medicine.

In a genetic trick, the research team used short hairpin RNAs to switch off 2,752 genes related to cell metabolism, including iron and sulfur biochemistry, one by one. They found that many genes which were essential to survival in high oxygen levels were not as important in low oxygen.

Strikingly, the NFS1 gene was the most essential for survival at the elevated oxygen level present in the lungs, but not at the much lower oxygen level encountered by cells under the skin. When the researchers injected cancer cells with or without NFS1 under the skin of mice, a low oxygen environment, they grew equally well. But the same cells failed to form tumors in the lungs. Consistent with these findings in mice, analysis of human datasets revealed that NFS1 levels were higher in lung adenocarcinoma cells than in nearby, normal lung tissue.

Two New Ways to Stop Lung Cancer Growth

NFS1 may be vital to lung cancer cell survival in two ways, say the authors. If NFS1 is not active enough to keep up with the oxygen-mediated destruction of iron-sulfur clusters, cancer cells can run out of key building blocks for important proteins and just stop multiplying, researchers found.

Alternatively, the number of iron-sulfur clusters may serve as a sensor of iron levels. When clusters dip too low, say the authors, cells "think" they are short on iron, and free more from the molecules that store it. In studies of cultured cancer cells, the Perlmutter Cancer Center team found that this build-up of "free" iron causes the production of reactive oxygen species (ROS) that damage cell membranes and trigger a type of cell death called ferroptosis. The authors note that future work will be needed to confirm this effect in live animals.

"Our study suggests that future anti-cancer treatments that deprive cancer cells of antioxidant protection against ROS can be combined with drugs that block NFS1, promoting cancer cell death by iron-mediated toxicity, even in tumors that are at low oxygen," says Possemato.

As a next step, the research team is screening for experimental compounds that block the ability of NFS1 to feed the production of iron-sulfur clusters.

###

Along with Possemato, study authors from NYU School of Medicine were first authors Samantha Alvarez and Vladislav Sviderskiy, as well as Erdem Terzi, Thales Papagiannakopoulos, Andre Moreira, and Sylvia Adams. Also making important contributions were study authors David Sabatini of the Whitehead Institute for Biomedical Research, and K?vanç Birsoy, from the Laboratory of Metabolic Regulation and Genetics at The Rockefeller University. The research was supported by National Institutes of Health grants T32GM007308, CA168940, CA193660, CA103866, CA129105, AI07389, S10 OD010584-01A1, S10 OD018338-01, and S10 OD016304-01; a Susan G. Komen grant, a (Jimmy) V Foundation grant; a Broad Institute SPARC grant, a Leukemia and Lymphoma Society Special Fellow Award, and Perlmutter Cancer Center support grant P30CA016087. The work was also supported by the Starr Cancer Consortium. Dr. Sabatini is an investigator of the Howard Hughes Medical Institute.

Media Contact

Greg Williams
[email protected]
212-404-3500
@NYULMC

http://nyulangone.org/

Share15Tweet7Share2ShareShareShare1

Related Posts

blank

Promising Advances in Kidney Health Emerge from High-Impact Clinical Trials – Part 3

November 8, 2025

Spouse Loss, Exercise, and Mental Health in Rural Seniors

November 8, 2025

Merging Imaging and Omics to Refine MCI Subtyping

November 8, 2025

Enhancing Early Breast Cancer Care Through Patient Navigation

November 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Promising Advances in Kidney Health Emerge from High-Impact Clinical Trials – Part 3

Spouse Loss, Exercise, and Mental Health in Rural Seniors

Merging Imaging and Omics to Refine MCI Subtyping

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.