• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Oncotarget: Researchers identify a potential molecular trigger for invasiveness in prostate cancer cells

Bioengineer by Bioengineer
November 21, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Oncotarget

ORCHARD PARK, New York – (Nov. 20, 2017) – A small protein modification can trigger the aggressive migratory and invasive properties of prostate cancer cells, according to new research published on the cover of Oncotarget. The findings give greater insight into how cancers can move from one location in the body to another, and could help develop more effective therapies in the future.

When cells break free from the original tumor and migrate to another location through the bloodstream, they become metastatic. The emergence of secondary tumors is often correlated with a poor prognosis.

The cellular process that allows these cells to migrate is known as epithelial-to-mesenchymal transition (EMT). One of the proteins thought to activate EMT is called transforming growth factor β (TGFβ), which exerts its effects by activating several other proteins, including one called Snail1. While the activation of Snail1 is recognized as an important event in EMT, how it happens has remained unclear. Revealing this mechanism could give scientists a way to target EMT, thus preventing cancer metastasis.

The Oncotarget study, carried out by researchers from two Swedish universities, Umeå University and Uppsala University, now reveals a key step in Snail1 modification. The team found that modifying a single amino acid – the building block that makes up proteins – can alter Snail1 and make cancer cells grown in the lab more invasive. This modification, called 'sumoylation,' involves the attachment of other small proteins, which change the structure and function of Snail1. Importantly, the researchers found that preventing the sumoylation of Snail1 by genetic modification abolished the migratory and invasive properties in human prostate cancer cells.

The team also found that modified Snail1 regulated the expression of specific genes and proteins involved in EMT. Furthermore, the researchers identified that in prostate cancer cells, sumoylated-Snail1 can further enhance TGFβ signaling and EMT in prostate cancer. Lastly, when they compared the levels of proteins involved in EMT in prostate cancer tissues and normal tissues, they found levels of several proteins including Snail1 were elevated in the cancer.

"These results suggest that sumoylation of Snail1 might be a marker for prostate cancer progression," said Professor Marene Landström. "As sumoylation inhibitors are currently being tested to combat the development of breast cancer tumors, it would be interesting to see the effects of targeting Snail1 sumoylation in prostate cancer."

Future studies in different cancers is necessary to understand whether sumoylated-Snail1 is a universal trigger for cancer cell invasiveness.

###

About Oncotarget

Oncotarget is a twice-weekly, peer-reviewed, open access biomedical journal covering research on all aspects of oncology and publishing sub-sections on topics beyond oncology such as Aging, Immunology and Microbiology, Autophagy, Pathology and Chromosomes and more. Oncotarget is published by Rapamycin Press, the publishing division of Impact Journals LLC.

Media Contact

Ryan James Jessup
[email protected]
202-638-9720

Related Journal Article

http://dx.doi.org/10.18632/oncotarget.20097

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Efficient Matrix Solving with Resistive RAM Technology

October 13, 2025

Chemical Dimerization Inhibits GSDMD-Driven Pyroptosis

October 13, 2025

Dana-Farber Leads Phase 3 Trials for Breast, Lung, and Bladder Cancer Unveiled at ESMO Congress 2025

October 13, 2025

Psychedelic 5-HT2A Activation Changes Brain Blood Flow

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1230 shares
    Share 491 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Efficient Matrix Solving with Resistive RAM Technology

Chemical Dimerization Inhibits GSDMD-Driven Pyroptosis

Dana-Farber Leads Phase 3 Trials for Breast, Lung, and Bladder Cancer Unveiled at ESMO Congress 2025

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.