• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Engineering non-immune cells to kill cancer cells

Bioengineer by Bioengineer
November 13, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: ETH Zurich

T-cells are one of the immune system's major weapons. They detect the body's cells infected with a virus and trigger their ablation, effectively killing the virus. T-cells cannot do the same with cancer cells, however, as they do not recognise them as foreign cells and are therefore unable to eliminate them.

But researchers have recently used T-cells engineered in the laboratory to combat tumours. Modified to include additional functions, these immune cells can hunt down and kill cancer cells. Unfortunately, however, such immune cell therapies can have significant side-effects. On top of that, the production of modified T-cells is technically challenging. Now a team of researchers led by ETH Professor Martin Fussenegger from the Department of Biosystems Science and Engineering (D-BSSE) in Basel has come up with an innovative and simplified approach for producing therapeutically effective synthetic designer cells to combat cancer. The researchers have built three additional components into human renal cells and (adipose) stem cells, thereby transforming them into synthetic designer cells that mimic T-cells.

One of the components of synthetic T-cells entails molecular antennae protruding well outside the membrane. Also embedded within the cell membrane are antibodies with specific docking sites, which can sense the target structures of the cancer cell and bind to them. The third component is a gene network that generates a molecule complex. This molecule complex comprises a molecular "warhead" that penetrates the membrane of the target cell. It is linked to a converter molecule that activates an anti-cancer substance in the tumour cell's interior.

The precursor of this active substance needs to be added to the system externally. Cancer cells absorb this substance, and the converter module transforms it from an inactive to inactive state. The cancer cells bursts, the active substance is released and destroys other tumour cells in the "death zone" around the synthetic T-cell. "This bystander effect makes our synthetic T-cells even more effective," Professor Fussenegger explains.

Mechanical trigger

The mechanism triggering the signal cascade leading to the destruction of the cancer cell is new, and has a physical function: as the synthetic T-cell moves closer towards the target cell, the antennae proteins buckle. The antennae's anchorage deep within the cell therefore loses contact with a molecular switch that it had previously blocked. As a response to the "ON" command, a signal cascade is initiated which actuates the production of the molecule complex.

The new type of artificial T-cell has several advantages over current cancer treatments. Whereas during chemotherapy the body is flooded with active substances in order to kill as many rapidly dividing cells as possible in a very unselective manner, only a few artificial T-cells are needed in the new therapy. What's more, these are only deployed locally and in a carefully targeted fashion. "Our innovative T-cells may detect and kill metastasising cancer cells at a very early stage, when other treatments are not effective," Professor Fussenegger says. Another benefit: "The artificial T-cells operate totally independently from the body's immune system, enabling it to continue to function perfectly normally, so that fewer side-effects are likely."

In addition, the modular design of the system allows it to be expanded. Researchers can equip the artificial killer cells with different types of docking sites that bond to other types of cancer cells. For the current study, just published in the journal Nature Chemical Biology, scientists used docking sites that detect only one specific type of mammalian cancer cell. "This technology provides us with an enormous degree of generalisation that cannot be achieved with the genuine T-cells used in current cancer therapies," Fussenegger stresses.

It's still not clear whether – and how – this system will function in the human body. So far, ETH researchers have only tested their new cells in cell cultures. "At present our new system is still a long way from a therapeutic application," says the ETH professor. "But I believe we have opened up a new front in the battle against cancer."

###

Media Contact

Dr. Martin Fussenegger
[email protected]
41-613-873-160
@ETH_en

http://www.ethz.ch/index_EN

Original Source

https://www.ethz.ch/en/news-and-events/eth-news/news/2017/11/non-immune-cells-to-kill-cancer-cells.html http://dx.doi.org/10.1038/nchembio.2498

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.