• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Elderly chromosomes activate genes differently than in the young

Bioengineer by Bioengineer
October 31, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Grey hair, wisdom, and wrinkles on our skin mark us as we age, but it's the more subtle changes beneath the surface that make us old. Now, researchers have discovered that our chromosomes also wrinkle with age, changing how our immune system renews itself.

Our chromosomes are our instruction manuals. They tell how to make every protein we need to live. They look like long necklaces of DNA, coiled and curled in the center of every cell in the body. Some parts of the necklace are open and loose, others are coiled tightly or obscured by other sections of the chain. If a part is tightly coiled, it's harder for the cell's machinery to access the DNA in that section and activate the genes that DNA describes.

New research by a team from UConn Health and the Jackson Laboratory for Genomic Medicine (JAX-GM) shows that our chromosomes age along with us, with some sections of the chromosome curling and closing up and making it harder to access DNA that might be critical to defend our bodies against disease. The paper appeared in the Journal of Experimental Medicine on Sept. 13.

"In young people, thousands of sites are open, seemingly ready to activate genes and make protein. There are genes and pathways that are very active in younger people that appear to lose their activity in older adults," says George Kuchel, UConn Health geriatrician and director of the UConn Center on Aging. "The portions that are open and the portions that are closed look very different" in younger people versus older people, he adds.

Kuchel worked with JAX-GM's immunologist Jacques Banchereau and computational biologist Duygu Ucar to determine the regions of chromosomes and genes that lose their activity with aging. The large amount of data and its diversity required Ucar and her team to invent new analysis techniques to get meaningful results from it. The close collaboration between researchers at UConn Health and JAX-GM is what makes this type of complex study possible.

The researchers recruited 75 healthy young people between the ages of 22 and 40 years, and 26 healthy seniors aged 65 and older to participate in the study. Each person gave a blood sample, and the research team then isolated immune cells from the blood. They investigated how the immune cells' gene activation changed with aging.

The differences between younger people and older made a clear signature, one that had never been seen before in genomic analysis. Regions of chromosome coding for genes that encourage the development and differentiation of T-cells, which help defend us against flu and other viral infections and some cancers, are more likely to be open in young people compared to the elderly. On the other hand, regions of chromosome coding for genes associated with cell death and inflammation appeared to be more open in the elderly than in the young.

Kuchel, Banchereau, and Ucar have new studies now underway that will apply this type of genomic analysis to pneumococcal vaccine response, as well as to overall disease resilience in the elderly.

###

The work was supported by the Jackson Laboratory Director's Innovation Fund, the UConn Health Travelers Chair, and funding from the National Institutes of Health.

Media Contact

Kim Krieger
[email protected]
202-236-0030
@UCToday

University of Connecticut

https://today.uconn.edu/2017/10/aged-dna-may-activate-genes-differently/

Related Journal Article

http://dx.doi.org/10.1084/jem.20170416

Share12Tweet8Share2ShareShareShare2

Related Posts

Gene-by-Gene Editing Achieved in Phages with Fully Synthetic DNA

Gene-by-Gene Editing Achieved in Phages with Fully Synthetic DNA

November 10, 2025
Dual Inhibition of Cooperative Motor Proteins Emerges as a Promising Strategy to Kill Cancer Cells

Dual Inhibition of Cooperative Motor Proteins Emerges as a Promising Strategy to Kill Cancer Cells

November 10, 2025

Incorporating Frailty and Age Metrics to Enhance Pancreatic Cancer Therapies

November 10, 2025

Key Genes Differ in X- and Y-Sperm of Bos indicus

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Researchers at University Hospitals Seidman Cancer Center Highlight Age as Key Factor in Metastatic Prostate Cancer Treatment Strategies

Universitat Jaume I’s Institute of Advanced Materials Drives Breakthroughs in Next-Generation Neuromorphic Computing Research

Houston Medical Tech Firm Takes Top Prize at Scientific Sessions 2025 Global Health Tech Competition

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.