• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Pseudopod protrusions propel amoeboid cells forward: A 3-D swimming model

Bioengineer by Bioengineer
October 31, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Eric J. Campbell and Prosenjit Bagchi, Rutgers University

WASHINGTON, D.C., October 31, 2017 — Rhythmic patterns and precise motions — these are key elements of proper swimming. Olympians demonstrate repeated patterns of breathing, with synchronized head, leg and arm movements, enthralling spectators and provoking applause for record-breaking paces. Comparable demonstrations of this pattern repetition and power usage can also be seen in a microscopic swimmer — the amoeboid cell.

The cell swimming shapes are now predictable to new levels of precision thanks to advanced 3-D modeling. Researchers Eric J. Campbell and Prosenjit Bagchi, from the Mechanical and Aerospace Engineering Department at Rutgers University, generated a 3-D model of an amoeba practicing pseudopod-driven swimming. The research will appear on the cover of this month's issue of Physics of Fluids, from AIP Publishing.

Amoeboid cells have uniquely flexible cytoskeletons, with no set shape. They can contract and expand their skeletal system while simultaneously altering the consistency of their cytoplasm, the plasma surrounding the cell's organelles. Amoeboid cells are also distinctive with their capacity for pseudopod-driven motility. Pseudopods, meaning false feet, are projections of the cell body that can grow, split or retract to provide locomotion. Pseudopod movement is more complex than most would expect. It relies on biomolecular reactions, cell deformation and the motion of both cytoplasm and extracellular fluid.

"In this research, we combined a state-of-the-art model for cell deformation with intra- and extra-cellular fluid motion, and protein biochemistry using a dynamic pattern formation model," Campbell said. "We then used parallel supercomputers to predict the cell's motion, and studied its behavior by varying cell deformability, fluid viscosity, and protein diffusivity."

Amoeboid cells show a unidirectionality in swimming with a corresponding change in pseudopod dynamics, caused by projections becoming more prevalent at the front of the cell. This unidirectionality is likely caused by an increased swimming speed due to the focused orientation. Using computer model simulations, the researchers studied cell swimming by varying protein diffusivity, membrane elasticity and cytoplasmic viscosity.

Accurately modeling amoeboid cell swimming posed a number of challenges. "The model needed to be able to resolve deformation in three-dimensions with high accuracy and without any numerical instability," Campbell said. Protein biochemistry, which creates the locomotive force, had to be coupled to the model. Fluid motion also had to be considered. "The intra- and extra-cellular fluids may have dissimilar properties, and the model must account for such differences."

These various parameters were integrated to optimize cell locomotion modeling, providing new, more precise information about the locomotion mechanisms. Amoeboid cells demonstrating this pseudopod-driven motility can offer insights into many biological processes. According to Campbell, the mobility is also observed during embryonic development, wound healing, immune response by white blood cells, and metastatic cancer cells.

###

The article, "A computational model of amoeboid cell swimming," is authored by Eric J. Campbell and Prosenjit Bagchi. The article will appear in Physics of Fluids Oct. 31, 2017 (DOI: 10.1063/1.4990543). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4990543.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See http://pof.aip.org.

Media Contact

Julia Majors
[email protected]
301-209-3090
@AIPPhysicsNews

http://www.aip.org

Related Journal Article

http://dx.doi.org/10.1063/1.4990543

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Liver Transplantation for Cancer with Genomics

Exploring Water Absorption in Footballs: Leather vs. Synthetic

Grape and Olive Waste Transformed Into Asphalt Antioxidants

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.