• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Nanoscale platform aims to control protein levels

Bioengineer by Bioengineer
October 30, 2017
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Segatori Research Group/Rice University

HOUSTON – (Oct. 30, 2017) – A nanoscale antibody first found in camels combined with a protein-degrading molecule is an effective new platform to control protein levels in cells, according to Rice University scientists. The technique could aid fundamental research into cellular dynamics as well as the design of synthetic gene circuits.

Rice chemical and biomolecular engineer Laura Segatori, former graduate student Wenting Zhao and former undergraduate Lara Pferdehirt invented a bifunctional recognition system they call NanoDeg. It allows them to target specific proteins in a cell and strictly regulate their degradation.

The plug-and-play system will allow synthetic biologists to study the function of a specific protein within the cellular environment by assessing how the protein expression level affects the life of a cell, Segatori said.

The research appears in the American Chemical Society journal ACS Synthetic Biology.

NanoDeg accelerates proteolysis — the enzymatic breakdown of proteins — to control the levels of targeted proteins after translation.

One function springs from the single-chain antibody from camelids, which can be customized to target specific proteins. When the antibodies were discovered in camels (and later sharks), researchers quickly recognized their unique properties, including their small size, high solubility and ability to recognize even targets that are hidden or in intermediate states. They are much smaller than the antibodies found naturally in humans and most other organisms but can be readily made and modified in bacteria and other cells.

The other function relies on degrons, short sequences in proteins that are responsible for regulating the rate of a protein's degradation. These can also be customized to tune the depletion of a target protein to the desired levels.

When combined as NanoDegs, they become a powerful, universal platform for modulating cellular protein levels, Segatori said.

"Essentially, it allows us to control the specific amount of proteins in cells," she said. "We can tailor it to target any protein in a cell, and once the degron-tagged nanobody binds to that partner, the whole complex is degraded.

"The advantage of this system is that it targets expression at the protein level," Segatori said. "Typically, when people want to modulate the amount of proteins in cells, they act at the DNA or RNA — the genetic — level. But by acting at the protein level, we can target different post-regulation modifications, and much more importantly, we have much more control over the rate and extent of depletion of the protein."

As a proof of principle, the researchers designed a synthetic gene circuit that expressed both green fluorescent protein (GFP), which researchers use to report on cellular processes, and a NanoDeg that targets it. "We used GFP because it is a commonly used reporter and fluorescence is easy to measure," Segatori said. "When the nanobody recognizes GFP, the whole complex is taken for degradation."

It will be also useful to those who want cleaner information about the activities of proteins in cells.

"Say you design a genetic circuit in which GFP expression is activated when the cell is under stress, like nutrient starvation or heat, for example," Segatori said. "When the cell is exposed to the stimulus, GFP is expressed and you can detect an increase in cell fluorescence.

"But when you take away the stimulus, the decay of the signal doesn't necessarily reflect the decay of the stimulus; it reflects the stability of the GFP reporter," she said. "What we've done is create a gene circuit in which GFP expression is activated under stimulus, but when the stimulus is turned off, the NanoDeg degrades GFP very rapidly. That increases the sensitivity and dynamic resolution of a synthetic gene circuit."

###

Zhao, first author of the paper, is now a postdoctoral researcher in systems biology at Columbia University Medical Center. Co-author Pferdehirt is now a graduate student at Washington University. Segatori is an associate professor of chemical and biomolecular engineering, of bioengineering and of biochemistry and cell biology.

The National Science Foundation, the Welch Foundation and the Kleberg Foundation supported the research.

Read the abstract at http://pubs.acs.org/doi/10.1021/acssynbio.7b00325

This news release can be found online at http://news.rice.edu/2017/10/30/nanoscale-platform-aims-to-control-protein-levels/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

Synthetic gene circuits pump up cell signals: http://news.rice.edu/2014/04/08/synthetic-gene-circuits-pump-up-cell-signals-2/

Laura Segatori Research Group: http://www.owlnet.rice.edu/~ls15/segatori/Home.html

BioSciences at Rice: http://biosciences.rice.edu

Rice Department of Chemical and Biomolecular Engineering: https://chbe.rice.edu

Rice Department of Bioengineering: http://www.bioe.rice.edu

Images for download:

http://news.rice.edu/files/2017/10/1030_CAMELID-1-WEB-15vildz.jpg

The camelid nanobody (center), first identified in camels, is a heavy-chain antibody that is much smaller and easier to program than antibodies found in most organisms, including humans, like that at left. At right, the monomeric camelid (red) is compared with the structure of the full-sized human antibody. VHH is a nanobody designed to target green fluorescent proteins used in proof-of-principle tests at Rice. (Credit: Segatori Research Group/Rice University)

http://news.rice.edu/files/2017/10/1030_CAMELID-2-WEB-qgy1an.jpg

Wenting Zhao, left, and Laura Segatori. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Editor's note: Links to high-resolution images for download appear at the end of this release.

Contact:

David Ruth
713-348-6327
[email protected]

Mike Williams
713-348-6728
[email protected]

Media Contact

David Ruth
[email protected]
713-348-6327
@RiceUNews

http://news.rice.edu

Related Journal Article

http://dx.doi.org/10.1021/acssynbio.7b00325

Share13Tweet8Share2ShareShareShare2

Related Posts

UVB Radiation’s Impact on Catla Catla Spawn

UVB Radiation’s Impact on Catla Catla Spawn

September 24, 2025
blank

Custom Phage Cocktail Targets Enterobacter cloacae Infections

September 24, 2025

Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

September 24, 2025

Celebrating 100 Years Since the Birth of IVF Pioneer Sir Robert Edwards

September 24, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    70 shares
    Share 28 Tweet 18
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12
  • Rapid Spread of Drug-Resistant Fungus Candidozyma auris in European Hospitals Prompts Urgent Warning from ECDC

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Heart Disease Behind One in Three Deaths Worldwide in 2023: New Global Report

Cardiovascular Diseases Account for One in Three Deaths Worldwide in 2023

Boosting Patient Interaction: A Systematic Review Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.