• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research shows how environment plays key role in changing movement behavior of animals

Bioengineer by Bioengineer
October 30, 2017
in Biology
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
  • Theory explains how animals such as bats, insects and birds adjust movement behaviour based on environment
  • Environmental cues which could change animal movement include seeking out food, avoiding predators and locating mating partners
  • Animals have to continuously exert force to overcome environmental drag and friction and adapt behaviour accordingly

Mathematicians from the University of Leicester have developed a theory which explains how small animals, such as bats, insects and birds, adjust their movement behaviour based on cues within their environment.

In a paper published in Scientific Reports, the researchers propose a unified theory of animal movement that relates the movement pattern to an animal's biological traits such as its mass and body shape and to the properties of the environment.

The theory shows how different movement patterns may arise naturally from the interplay between an animal's force, the environmental drag, and an animal's behavioural response to the environmental cues. The cues include information about an animal's movement environment, in particular the information about the location of food sources, predators and mating partners.

The theory is based on two assumptions: firstly, that in its movement a foraging animal has to continuously exert a force to overcome the drag or friction from the environment, and secondly, that in response to clues or signals received from the environment – for example through noise or smell -the animal has to change its speed accordingly and hence exert some additional force, for instance as is needed to avoid predators.

Professor Sergei Petrovskii from the University of Leicester's Department of Mathematics, who led the research, said: "For the last two decades, the patterns of animal movement have been an issue of high controversy and sometimes even a heated debate.

"The traditional view is that a foraging animal disperses in space in a slow, diffusive way, similar to how small inanimate 'Brownian' particles moves in physical systems. It has been challenged by growing evidence that under some conditions animals may perform a faster 'Levy walk', which is also thought to provide a more efficient search strategy.

"However, how animals actually choose between the two patterns remained a mystery. Our new theoretical study sheds a new light on this problem."

The theory works best for small animals such as insects, small fish and small birds.

The study, which is funded by The Royal Society, makes an important step to understanding animal movement behaviour and could help to provide answers to issues such as management of biological invasion, control of epidemics spread, and protection of endangered species.

Professor Petrovskii added: "We have been working on this problem for almost ten years, and we are very grateful to The Royal Society for their support which allowed us to make this significant step in our research."

###

The paper, 'A random acceleration model of individual animal movement allowing for diffusive, superdiffusive, and superballistic regimes' published in the journal Scientific Reports, is available here after the embargo lifts (DOI:10.1038/s41598-017- 14511-9): http://nature.com/articles/doi:10.1038/s41598-017-14511-9

Media Contact

Professor Sergei Petrovskii
[email protected]
01-162-523-916
@UoLNewsCentre

http://www.leicester.ac.uk

http://dx.doi.org/10.1038/s41598-017-14511-9

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

BBX Gene Family’s Role in Chrysanthemum Fungus Defense

October 21, 2025
Shifts in Colorectal Cancer Screening Methods Among Insured Populations

Shifts in Colorectal Cancer Screening Methods Among Insured Populations

October 21, 2025

Sex-Specific Liver Transcriptomes: Maternal Obesity’s Impact

October 21, 2025

Unraveling the T-cell Surge: Key Genes That Forecast T-cell Expansion in Cancer Immunotherapy

October 21, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1271 shares
    Share 508 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    303 shares
    Share 121 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    137 shares
    Share 55 Tweet 34
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    130 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Wayne State University Appoints New Director for Institute of Gerontology, Announces Vice President for Research & Innovation

Scientists Discover Novel Targeted Method to Halt Prostate Cancer Progression

University of South Alabama Researcher Receives National Grant to Investigate Triggers of Inflammatory Responses

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.