• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Using networks to understand tissue-specific gene regulation

Bioengineer by Bioengineer
October 27, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Brigham and Women's Hospital have discerned that different tissue functions arise from a core biological machinery that is largely shared across tissues, rather than from their own individual regulators. In a paper published in Cell Reports, Kimberly Glass, PhD, of the Channing Division of Network Medicine, and her team explain how they have used PANDA (Passing Attributes between Networks for Data Assimilation) to create network models of the interactions between transcription factors and genes, finding that the presence of different tissue functions is the result of subtle, tissue-specific shifts in a regulatory network. For each of these tissue-specific functions, the network has the same core components, but they're combined in different ways with added genetic and environmental information. The team analyzed data from the Genotype-Tissue Expression (GTEx) consortium, among other regulatory information sources, to reconstruct and characterize regulatory networks for 38 tissues.

PANDA, a model created by Glass and her team in 2013, was uniquely qualified for this investigation because it can more accurately model interactions between transcription factors – which help control where, when and to what extent genes get activated – and their targets. Summarizing the complex interactions between transcription factors and genes is an important step in understanding patterns in the network that inform how gene regulation gives rise to a variety of specific tissue functions.

The authors also observed that the regulation of specific tissue function is largely independent of transcription factor expression. They note that there are approximately 30,000 genes in the human genome, but fewer than 2,000 of them encode transcription factors.

"A large number of processes must be carried out for a tissue to function properly," said Glass. "Rather than activating particular transcription factors to carry out these various processes, we find that that the networks connecting these regulators to their target genes is reconfigured to more effectively coordinate the activation of those tissue functions."

The team notes that their work highlights the importance of considering the context of specific tissues when developing drug therapies. Given that shifted regulatory networks govern different functions, this will be important in order to understand the potential side effects of drugs outside of the target tissue.

###

This work was supported by grants from the US National institutes of Health, including grants from the National Heart, Lung, and Blood Institute (5P01HL105339, 5R01HL111759, 5P01HL114501, K25HL133599), the National Cancer Institute (5P50CA127003, 1R35CA197449, 1U01CA190234, 5P30CA006516, P50CA165962), the National Institute of Allergy and Infectious Disease (5R01AI099204), and the Charles A. King Trust Postdoctoral Research Fellowship Program, Sara Elizabeth O'Brien Trust, Bank of America, N.A., Co-Trustees. Additional funding was provided through a grant from the NVIDIA foundation. This work was conducted under dbGaP approved protocol #9112 (accession phs000424.v6.p1).

Paper Cited: Sonawane AR et al. "Understanding Tissue-Specific Gene Regulation." Cell Reports DOI: 10.1016/j.celrep.2017.10.001

Media Contact

Haley Bridger
[email protected]
617-525-6383
@BrighamWomens

http://www.brighamandwomens.org

http://dx.doi.org/10.1016/j.celrep.2017.10.001

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.