• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New study identifies mechanism bacteria use to attach to surfaces

Bioengineer by Bioengineer
October 27, 2017
in Biology
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Jingbo Kan

Most of our knowledge of bacteria comes from the study of bacteria swimming around in liquid but there is a growing consensus that how bacteria interact physically with each other and with surfaces is crucial to understanding their behavior. A new study appearing in the journal Science sheds some light on this consensus by showing that when interacting with surfaces, bacteria use nanoscale tentacles called pili as their sense of touch.

In the article, "Obstruction of Pilus Retraction Stimulates Bacterial Surface Sensing," a group of interdisciplinary researchers show that in the case of the bacterium Caulobacter crescentus, a model organism that splits its life between swimming and attaching to surfaces, physically blocking the retraction of its pili triggers the attachment to surfaces. Pili are ubiquitous microbial appendages that many types of bacteria possess. During their study, the scientists found a new technique to observe and film Caulobacter crescentus pili undergoing dynamic cycles of extension and retraction. They were also able to measure the forces exerted by the retraction of these nanometric tentacles and noticed that within seconds of contact with a surface the cycles ceased. This impediment of the retraction of the pilus coincided with the excretion of the adhesive holdfast, a chemical glue required for firm attachment. Therefore, bacteria need the resistance to pilus retraction that occurs upon contact with a surface in order to sense surfaces and commit to a tighter adherence. Therefore, bacteria need the resistance to pilus retraction that occurs upon contact with a surface in order to sense surfaces and excrete the glue that makes them firmly adhere.

Understanding this mechanism of surface sensing in Caulobacter crescentus "might help us understand how other bacteria sense surfaces and control their growth, either to improve it in the case of good bacteria, used for instance in bioreactors, or curb it as in the case of hospital pathogens growing on medical catheters," said Dr. Nicolas Biais, Assistant Professor of Biology at Brooklyn College and The Graduate Center of the City University of New York (CUNY).

###

This study is a collaborative effort between researchers from the City University of New York Indiana University, Emory University, University of Lyon and the Georgia Institute of Technology. The link between the City University of New York and Caulobacter crescentus dates back far before this study, however, as Brooklyn College alumnus Lucy Shapiro pioneered the study of Caulobacter crescentus as a model system.

Read the full study at http://science.sciencemag.org/content/358/6362/535

The City University of New York is the nation's leading urban public university. Founded in New York City in 1847, the University comprises 24 institutions: 11 senior colleges, seven community colleges, and additional professional schools. The University serves nearly 275,000 degree-credit students and 218,083 adults, continuing and professional education students.

For more information, please contact: Shante Booker or visit http://www.cuny.edu/research

Media Contact

Shante Booker
[email protected]
@cunyresearch

Home

Related Journal Article

http://dx.doi.org/10.1126/science.aan5706

Share12Tweet7Share2ShareShareShare1

Related Posts

New Study Uncovers Unexpected Links Between Family Size and Health Outcomes

New Study Uncovers Unexpected Links Between Family Size and Health Outcomes

November 10, 2025

RASA1 Reveals Z/W Dosage Effects on Chicken Gonads

November 10, 2025

Expert Consensus on Diagnosing and Treating Malignant Mesothelioma of the Tunica Vaginalis Testis

November 10, 2025

Mariner Model Analyzes Transposable Elements’ Stress Response

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI-Powered Digital Detection of Alzheimer’s and Related Dementias: A Zero-Cost Solution Requiring No Extra Time from Clinicians

Stepping Strong: Integrating Podiatry into Chemotherapy Care Enhances Patient Outcomes

Tiny Fish-Inspired Robots Collaborate to Target Multi-Point 3D Lesions for Precise Drug Delivery

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.