• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

An experimental model might shed new light on the development of brain cancer in children

Bioengineer by Bioengineer
October 27, 2017
in Science News
Reading Time: 2 mins read
2
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Pediatric high-grade glioma is the primary cause of cancer death in children. Genesis of these tumors is believed to be driven by mutations in proteins that disrupt fundamental mechanisms governing the development of the human brain. However, our understanding of these tumors remains incomplete due to the lack of faithful experimental models. Now, researchers of the German Center for Neurodegenerative Diseases (DZNE) together with colleagues from Canada and the UK present in the journal "Cancer Cell" a novel laboratory model that replicates key hallmarks of this disease. Results might pave the way for a better understanding of processes, relevant for both cancer and neurodegeneration.

Pediatric high-grade glioma (pHGG) is a devastating illness and the most deadly cancer affecting children. Mutations in "histone 3.3", a DNA-binding protein that acts upon gene expression for regulation of brain function and aging, are considered to play a pivotal role for the development of these tumors. "Current treatment involves surgery, radiation and chemotherapy, albeit with limited success. Most patients die within one to two years from diagnosis," says Prof. Paolo Salomoni, who leads a research group at the DZNE's Bonn site. For the current study, his team cooperated with the lab of Prof. Nada Jabado at McGill University in Montreal and with researchers from other institutions.

"Up to now, there was no truly representative in vivo model to study the underlying mechanisms of this disease," says Salomoni. "That is why we decided to develop a mouse model that recapitulates hallmark pathological features of pHGG. Our findings support the concept that mutations in histone 3.3 alter gene regulation already during embryonic development. This means that the cancer likely starts in utero."

For the study the researchers altered the blueprint of histone 3.3 in mice by genetic engineering. "This model will enable insights into the development of pHGG and provide an opportunity to explore novel therapeutic approaches", Salomoni says. The biologist sees further potential for applications: "Laboratory experiments from DZNE and others suggest that alterations in histone 3.3 are implicated not just in brain tumors but also in depression and age-related brain diseases. Our model might therefore help to study DNA associated mechanisms involved in a wide spectrum of diseases."

###

Media Contact

Dr. Marcus Neitzert, DZNE Media Relations
[email protected]
0049-228-433-02267
@dzne_en

http://www.dzne.de/en/

https://www.dzne.de/en/about-us/public-relations/news/2017/press-release-no-19.html

Related Journal Article

http://dx.doi.org/10.1016/j.ccell.2017.09.014

Share12Tweet7Share2ShareShareShare1

Related Posts

Stepping Strong: Integrating Podiatry into Chemotherapy Care Enhances Patient Outcomes

November 10, 2025
Tiny Fish-Inspired Robots Collaborate to Target Multi-Point 3D Lesions for Precise Drug Delivery

Tiny Fish-Inspired Robots Collaborate to Target Multi-Point 3D Lesions for Precise Drug Delivery

November 10, 2025

Blue Zones and American College of Lifestyle Medicine Introduce Blue ZonesĀ® Certification for Physicians and Health Professionals

November 10, 2025

New Study Uncovers Unexpected Links Between Family Size and Health Outcomes

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stepping Strong: Integrating Podiatry into Chemotherapy Care Enhances Patient Outcomes

Tiny Fish-Inspired Robots Collaborate to Target Multi-Point 3D Lesions for Precise Drug Delivery

Blue Zones and American College of Lifestyle Medicine Introduce Blue ZonesĀ® Certification for Physicians and Health Professionals

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org Ā© Copyright 2023 All Rights Reserved.