• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New way to treat cholesterol may be on the horizon

Bioengineer by Bioengineer
October 26, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

HOUSTON – (Oct. 26, 2017) – A breakthrough discovery by scientists at Houston Methodist could change the way we treat cholesterol. Researchers found new evidence that challenges a 40-year notion of how fast we eliminate it from our bodies.

This accidental discovery, made by medical biochemist Henry Pownall, Ph.D., and his team at the Houston Methodist Research Institute, reveals a new pathway in the cholesterol-elimination chain that will be key to developing new drugs to lower cholesterol. Their findings are described in an article titled "ABCA1-Derived Nascent High Density Lipoprotein-Apo AI and Lipids Metabolically Segregate," appearing online Oct. 26 and in print Nov. 21 in the American Heart Association's Arteriosclerosis, Thrombosis, and Vascular Biology journal.

VIDEO: Dr. Pownall explains the research https://vimeo.com/239663429

Pownall, who is the corresponding author, said the initial purpose of their study was to prove the current model of cholesterol transport through the body was correct. It turns out, however, that the model was not quite right.

"The model people have been using for 40 years presumed that cholesterol was transported from the arteries with other lipids and proteins and entered a particle that stayed in the blood for several days before being cleared by the liver for disposal," Pownall said. "What we discovered in the process was something different. We discovered the cholesterol skips all these steps and goes directly from this early particle to the liver in two minutes. This is a thousand times faster than what was formerly suspected."

While most studies look at HDL cholesterol in its mature form found in blood, Pownall and his colleagues studied cholesterol in nascent HDL, an early form of HDL produced by cells. Cholesterol in the nascent HDL goes directly to the liver, largely skipping conversion to the mature form of HDL

Pownall stresses that it's not that current practices of treating "bad" LDL cholesterol are incorrect, but instead that physicians and researchers need to better understand how the "good" HDL cholesterol contributes to cardiovascular disease and how to raise it in a way that protects the heart, because some patients with very high HDL numbers, which were always thought to be beneficial, are actually at risk.

"LDL cholesterol, the so-called 'bad cholesterol' is well controlled with the current statin therapies. The track record for these cholesterol-lowering drugs is indisputable, and they will continue to work," Pownall said. "HDL, or the 'good cholesterol,' however, is a much trickier system. Not everything that raises it protects the heart and not everything that lowers it is bad for you. We will need to redesign new drugs to lower plasma cholesterol in a way that takes into account this new mechanism. We will look for interventions – maybe dietary, maybe pharmacological – that raise HDL cholesterol in a way that helps protect the arteries and prevent cardiovascular disease."

###

Researchers collaborating with Pownall on this paper were Bingqing Xu, Baiba K. Gillard, Antonio M. Gotto Jr., and Corina Rosales, and the work was supported by a High-density Lipoprotein (HDL) Biogenesis and Speciation grant from the National Institutes of Health's National Lung, Heart and Blood Institute (R01HL129767), Deutsche Forschungsgemeinschaft (Exc114-2) and Fondren Foundation.

To speak with Henry Pownall, Ph.D., contact Lisa Merkl, Houston Methodist, at 281-620-2502 or [email protected]. For more information about Houston Methodist, visit houstonmethodist.org. Follow us on Twitter and Facebook.

For more information: ABCA1-Derived Nascent High Density Lipoprotein-Apo AI and Lipids Metabolically Segregate. Arteriosclerosis, Thrombosis, and Vascular Biology DOI: https://doi.org/10.1161/ATVBAHA.117.310290 (Oct. 26, 2017) B. Xu, B.K. Gillard, A.M. Gotto Jr., C. Rosales, H.J. Pownall.

Media Contact

Lisa Merkl
[email protected]
832-667-5916
@MethodistHosp

http://methodisthealth.com

http://dx.doi.org/10.1161/ATVBAHA.117.310290

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.