• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Northeastern researchers discover fundamental rules for how the brain controls movement

Bioengineer by Bioengineer
October 26, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The human brain is a mysterious supercomputer. Billions of neurons buzz within an intricate network that controls our every thought, feeling, and movement. And we've only just begun to understand how it all works.

To conquer the puzzle of the human mind, researchers at Northeastern's Center for Complex Network Research start with simpler models. The brain of a nematode worm, for example, has about 300 neurons and 2,200 synapses.

Using the nematode as one test system, scientists at CCNR have spent the past several years understanding how a network controls itself–for instance, which individual neurons in the worm's brain are in charge of a backward wiggle. And in research published online in Nature, they describe for the first time their ability to predict, test, and confirm with unprecedented detail how a nematode's brain controls the way it moves.

"I am delighted to have the first direct experimental confirmation of the control principles," said Albert-László Barabási, Robert Gray Dodge Professor of Network Science and University Distinguished Professor of Physics, and director of the Center for Complex Network Research. "And I'm equally excited that it offered us a way to systematically predict, with exceptional accuracy, the neurons that are involved in specific processes."

Researchers in Barabási's lab studied the nematode brain, which has been mapped neuron by neuron, synapse by synapse. They developed a theory to predict precisely what neurons would control specific types of locomotion–the worm's ability to squirm and scoot around. Then, colleagues from the Medical Research Council Laboratory of Molecular Biology in Cambridge, England, tested the predictions by killing individual neurons from the nematode brain with a laser. They then measured the effects of these "microsurgeries" on behavior.

"Remarkably, the predictions were confirmed, supporting the theory and providing new insight into how individual neurons control body movements," said William Schafer, a scientist at the MRC lab who led the laser experiments.

This is an important first step toward what Emma Towlson, a postdoctoral researcher at CCNR and one of the study's lead authors, calls "the dream." One day, researchers may be able to translate a version of the nematode control model to the human brain. This would be life-changing for patients with cerebral palsy, Lou Gehrig's disease, and other ailments that lead to loss of muscle function.

"We could, in theory, turn something that is uncontrollable into something that is controllable. This is the ultimate ambition, but there is a huge leap in the middle," Towlson said.

To make sense of the nematode brain, Towlson created a map of the connections between neurons and muscles. She was surprised by the relative simplicity of the model, composed of ones and zeros that indicated whether or not there was a connection. Researchers also made a number of assumptions with regard to the biological parameters.

"And it still comes out with this level of prediction," Towlson said. "That amazes me. In my mind, that says we're really getting at something fundamental."

Moving forward, Towlson would like to examine the nematode brain network in more detail. She knows which neurons control which muscles and their corresponding movements. But how much energy and time does one wiggle take compared to another, and does that explain why the worms move in the ways they do?

Towlson also wants to apply the control principles to other models.

"I think the next sensible steps for us are zebra fish, maybe mouse, and then human," Towlson said. "The human brain is always the ultimate dream."

###

Media Contact

John O'Neill
[email protected]
617-373-5460
@Northeastern

http://www.neu.edu

https://news.northeastern.edu/2017/10/northeastern-researchers-discover-fundamental-rules-for-how-the-brain-controls-movement/

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.