• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Rhythm of memory

Bioengineer by Bioengineer
October 23, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Source: Marlene Bartos

The more we know about the billions of nerve cells in the brain, the less their interaction appears spontaneous and random. The harmony underlying the processing of memory contents has been revealed by Prof. Dr. Marlene Bartos' workgroup at the Institute of Physiology I. In a study written with a colleague from the Institute of Science and Technology Austria and published in the Nature Communications journal, she highlights the role of inhibiting circuits in the creation of high-frequency brainwaves in the hippocampus. With its work, the team, which also comes partly from the BrainLinks-BrainTools Cluster of Excellence and the Bernstein Center Freiburg, shows how the brain processes information that is relevant to memory.

"Researchers have suspected for a long time that frequencies over 30 Hertz coordinate the synchronous cooperation of various cell networks of the brain. It's also known that activity in this frequency range is markedly reduced in Alzheimer patients, for example," says Bartos, summing up the underlying idea of her research. But how do these signals, which are known as gamma waves, occur in several places simultaneously? And what does this mean for human memory in real terms? As experts in the field of synaptic links, Bartos and her team intensively studied the communication between what are called interneurons in the hippocampuses of mice. Situated between two or more other neurons, an interneuron is a cell type with especially short protuberances, which can effect a transmission of inhibiting impulses to its neighboring cells quickly and efficiently. "Similar to groups of instruments in an orchestra, there are small circuits in which inhibitory interneurons play an important part," explains Bartos. "You could imagine their role as being like that of the conductor, who makes the horns retreat into the background at points, in order to give them full weight once more the next moment."

The most important observation of the study was that, when they are roused from their rest, the surrounding cells are receptive to certain information. Then they are stimulated to develop a common potential for action, so that a signal can be transmitted to other neurons. This in turn can be measured electrophysiologically as a discharge of gamma waves. "The interesting aspect of this is that the micro-circuits do not interfere with one another, but can store or access various information in parallel, such as the attribute form and color of an object. This allows simultaneous, parallel processing and the storage of information. We believe that this is how the initial traces of memory are laid," says Bartos.

However, in order really to track down what makes memory, a lot more fundamental research is still required. Bartos and her team are working at top speed to make their findings usable for the treatment of neurodegenerative diseases within a few years.

###

Original publication: Strüber M, Sauer JF, Jonas P, Bartos M (2017) Distance-dependent inhibition supports focality of gamma oscillations. Nature Communications 8, Article 758 (2017). DOI: 10.1038/s41467-017-00936-3.

Read "The strength of the minority" article on Marlene Bartos' research in the University magazine uni'leben: http://www.pr2.uni-freiburg.de/publikationen/unileben/unileben-2017-3/#4

Contact:
Prof. Dr. Marlene Bartos
Systemic and Cellular Neurophysiology
Institute of Physiology I
Tel.: +49 761 203-5194
e-mail: [email protected]

Levin Sottru
Science Communication
BrainLinks-BrainTools Cluster of Excellence
University of Freiburg
Tel.: +49 761 203-9545
e-mail: [email protected]

Media Contact

Dr. Marlene Bartos
[email protected]
49-761-203-5194

Startseite

Related Journal Article

http://dx.doi.org/10.1038/s41467-017-00936-3

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Beneficial Gut Bacteria Enhances Placental Health for Improved Pregnancy Outcomes

October 7, 2025
Yeast Proteins Unlock the Mysteries of Drought Resistance

Yeast Proteins Unlock the Mysteries of Drought Resistance

October 6, 2025

Hub1 Overexpression: Revolutionizing Transcription and Splicing in Yeast

October 6, 2025

Scientists Secure $3.7 Million Grant to Explore the Link Between Perimenopause and Psychosis

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    74 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Undergraduates Evaluate AI Responses on Drug Interactions

Comparing Self-Reports and GP Records on Falls

Crocin and Meloxicam Alleviate Morphine Withdrawal in Mice

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.